Klin Padiatr 2011; 223(4): 214-220
DOI: 10.1055/s-0030-1269917
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Terminally Differentiated CD8 Cells in HIV-Infected Children: HIV-GAG/POL Specificity and IFN-γ Production

Terminal differenzierte CD8-Zellen bei HIV-infizierten Kindern: HIV-GAG/POL-Spezifität und IFN-γ-ProduktionD. Delbeck1 , 2 , M. Siepermann2 , O. Feyen2 , 9 , S. Wirth3 , U. Baumann4 , U. Wintergerst5 , M. Oette6 , R. Adam7 , M. Jetzek-Zader8 , T. Niehues1 , 2
  • 1Centre for Pediatric and Adolescent Medicine, HELIOS Klinikum Krefeld, Germany
  • 2Department of Pediatric Hematology, Oncology and Immunology, University Hospital Düsseldorf, Germany
  • 3Children's Hospital, HELIOS Klinikum Wuppertal, Germany
  • 4Department of Pediatric Pulmonology and Neonatology, Hannover Medical School, Hannover, Germany
  • 5Department of Pediatrics, St. Josef Hospital Braunau, Austria
  • 6Krankenhaus der Augustinerinnen, Clinic for Internal Medicine, Gastroenterology and Infectious Diseases, Cologne, Germany
  • 7Department of Pediatric and Adolescent Medicine, University Medical Centre Mannheim, Germany
  • 8Department of Anesthesiology, University Hospital Düsseldorf, Germany
  • 9Tavarlin AG, Neuss, Germany
Further Information

Publication History

Publication Date:
06 April 2011 (online)

Abstract

Background: CD8 cells are key to antiviral immunity and can be divided by phenotype into early (CD28+ CD27+), intermediate (CD28 − CD27+) and terminally differentiated subsets (CD28 − CD27 −). Despite effective HAART there is an unexplained expansion of CD8+CD28 − CD27 −T cells in HIV-infected children. The cytokine production and specificity of this terminally differentiated CD8 T cell subset in chronic virus infection is unclear.

Patients, Methods & Results: In a cohort of 26 HIV-infected children the cytokine production of terminally differentiated CD8 cells was analyzed by intracellular staining and FACS analysis and was compared to children with chronic hepatitis B infection and to healthy children. The specificity of CD8 subsets was analyzed by staining with Gag/Pol tetramers in a cohort of 13 patients. We show that an increased production of interferon-γ in terminally and early/intermediate differentiated CD8 cell subsets after stimulation is specific for HIV-infection. The expanded population of terminally differentiated CD8+CD28 − CD27 − T cells does include HIV Gag/Pol specific T cells in adults but not in children.

Conclusion: The expansion of terminally differentiated CD8 cells might be important for immunomodulation but in children it does not appear to play a role in HIV Gag and Pol specific immunity.

Zusammenfassung

Hintergrund: CD8-Zellen sind der Schlüssel für eine antivirale Immunität. Es werden frühe, intermediär differenzierte und terminal ausdifferenzierte Subpopulationen unterschieden. Trotz effektiver HAART gibt es eine bislang unerklärte Expansion der CD8+CD28 − CD27 − T-Zellen bei HIV-infizierten Kindern. Die Zytokinproduktion und die Spezifität dieser terminal differenzierten CD8-Zellen im Zusammenhang mit einer chronischen Virusinfektion sind noch nicht hinreichend geklärt.

Patienten, Methoden und Ergebnisse: Bei 26 HIV-infizierten Kindern wurde die Zytokinproduktion der terminal differenzierten CD8-Zellen durch intrazelluläre Markierung und FACS-Analyse untersucht und mit der von Kindern mit chronischer Hepatitis-B-Infektion sowie von gesunden Kindern verglichen. Die Antigenspezifität der CD8-Subpopulationen wurde durch Markierung mit Gag/Pol-Tetrameren bei 13 Kindern untersucht. Wir zeigen, dass nach Stimulation eine erhöhte Interferon-γ-Produktion sowohl in den terminal differenzierten wie auch in den frühen und intermediär differenzierten CD8-Zellen für die HIV-Infektion spezifisch ist. Die expandierte Subpopulation terminal differenzierter CD8+CD28 − CD27 − Zellen beinhaltet HIV-Gag/Pol-spezifische T-Zellen bei Erwachsenen, aber nicht bei Kindern.

Schlussfolgerung: Die Expansion von terminal differenzierten CD8-Zellen ist möglicherweise wichtig für die Immunmodulation, bei Kindern jedoch scheint sie keine Rolle in der HIV-Gag-und-Pol-spezifischen Immunität zu spielen.

References

  • 1 Almeida JR, Sauce D, Price DA. et al . Antigen sensitivity is a major determinant of CD8+ T-cell polyfunctionality and HIV-suppressive activity.  Blood. 2009;  113 6351-6360
  • 2 Appay V, Dunbar PR, Callan M. et al . Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections.  Nat Med. 2002;  8 379-385
  • 3 Appay V, Nixon DF, Donahoe SM. et al . HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function.  J Exp Med. 2000;  192 63-75
  • 4 Borrow P, Lewicki H, Hahn BH. et al . Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection.  J Virol. 1994;  68 6103-6110
  • 5 Buseyne F, Burgard M, Teglas JP. et al . Early HIV-specific cytotoxic T lymphocytes and disease progression in children born to HIV-infected mothers.  AIDS Res Hum Retroviruses. 1998;  14 1435-1444
  • 6 Buseyne F, Le Chenadec J, Corre B. et al . Inverse correlation between memory Gag-specific cytotoxic T lymphocytes and viral replication in human immunodeficiency virus-infected children.  J Infect Dis. 2002;  186 1589-1596
  • 7 Buseyne F, Scott-Algara D, Porrot F. et al . Frequencies of ex vivo-activated human immunodeficiency virus type 1-specific gamma-interferon-producing CD8+ T cells in infected children correlate positively with plasma viral load.  J Virol. 2002;  76 12414-12422
  • 8 Cao Y, Qin L, Zhang L. et al . Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection.  N Engl J Med. 1995;  332 201-208
  • 9 Chattopadhyay PK, Roederer M. Good cell, bad cell: flow cytometry reveals T-cell subsets important in HIV disease.  Cytometry A. 2010;  77 614-622
  • 10 Clerici M, DePalma L, Roilides E. et al . Analysis of T helper and antigen-presenting cell functions in cord blood and peripheral blood leukocytes from healthy children of different ages.  J Clin Invest. 1993;  91 2829-2836
  • 11 Davenport MP, Petravic J. CD8+ T cell control of HIV – a known unknown.  PLoS Pathog. 2010;  6 e1000728
  • 12 Dayton ET, Matsumoto-Kobayashi M, Perussia B. et al . Role of immune interferon in the monocytic differentiation of human promyelocytic cell lines induced by leukocyte conditioned medium.  Blood. 1985;  66 583-594
  • 13 Edwards BH, Bansal A, Sabbaj S. et al . Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma.  J Virol. 2002;  76 2298-2305
  • 14 Greenough TC, Brettler DB, Somasundaran M. et al . Human immunodeficiency virus type 1-specific cytotoxic T lymphocytes (CTL), virus load, and CD4 T cell loss: evidence supporting a protective role for CTL in vivo.  J Infect Dis. 1997;  176 118-125
  • 15 Halwani R, Doroudchi M, Yassine-Diab B. et al . Generation and maintenance of human memory cells during viral infection.  Springer Semin Immunopathol. 2006;  28 197-208
  • 16 Henrard DR, Phillips JF, Muenz LR. et al . Natural history of HIV-1 cell-free viremia.  JAMA. 1995;  274 554-558
  • 17 Hersperger AR, Pereyra F, Nason M. et al . Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control.  PLoS Pathog. 2010;  6 e1000917
  • 18 Huang S, Dunkley-Thompson J, Tang Y. et al . Deficiency of HIV-Gag-specific T cells in early childhood correlates with poor viral containment.  J Immunol. 2008;  181 8103-8111
  • 19 Julg B, Williams KL, Reddy S. et al . Enhanced anti-HIV functional activity associated with Gag-specific CD8 T-cell responses.  J Virol. 2010;  84 5540-5549
  • 20 Kiepiela P, Ngumbela K, Thobakgale C. et al . CD8+ T-cell responses to different HIV proteins have discordant associations with viral load.  Nat Med. 2007;  13 46-53
  • 21 Leligdowicz A, Onyango C, Yindom LM. et al . Highly avid, oligoclonal, early-differentiated antigen-specific CD8+ T cells in chronic HIV-2 infection.  Eur J Immunol. 2010;  40 1963-1972
  • 22 Lohman BL, Slyker JA, Richardson BA. et al . Longitudinal assessment of human immunodeficiency virus type 1 (HIV-1)-specific gamma interferon responses during the first year of life in HIV-1-infected infants.  J Virol. 2005;  79 8121-8130
  • 23 Lubens RG, Gard SE, Soderberg-Warner M. et al . Lectin-dependent T-lymphocyte and natural killer cytotoxic deficiencies in human newborns.  Cell Immunol. 1982;  74 40-53
  • 24 Miscia S, Di Baldassarre A, Sabatino G. et al . Inefficient phospholipase C activation and reduced Lck expression characterize the signaling defect of umbilical cord T lymphocytes.  J Immunol. 1999;  163 2416-2424
  • 25 Mofenson LM, Korelitz J, Meyer WA. et al . The relationship between serum human immunodeficiency virus type 1 (HIV-1) RNA level, CD4 lymphocyte percent, and long-term mortality risk in HIV-1-infected children. National Institute of Child Health and Human Development Intravenous Immunoglobulin Clinical Trial Study Group.  J Infect Dis. 1997;  175 1029-1038
  • 26 Musey L, Hughes J, Schacker T. et al . Cytotoxic-T-cell responses, viral load, and disease progression in early human immunodeficiency virus type 1 infection.  N Engl J Med. 1997;  337 1267-1274
  • 27 Niehues T, Horneff G, Knipp S. et al . Treatment-resistant expansion of CD8+CD28-cells in pediatric HIV infection.  Pediatr Res. 2000;  47 418-421
  • 28 Niehues T, Ndagijimana J, Horneff G. et al . CD28 expression in pediatric human immunodeficiency virus infection.  Pediatr Res. 1998;  44 265-268
  • 29 Ogg GS, Jin X, Bonhoeffer S. et al . Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA.  Science. 1998;  279 2103-2106
  • 30 Sáez-Cirión A, Sinet M, Shin SY. et al . Heterogeneity in HIV suppression by CD8 T cells from HIV controllers: association with Gag-specific CD8 T cell responses.  J Immunol. 2009;  182 7828-7837
  • 31 Schreiber GH. Interferon γ. The Cytokine Handbook.. 4th Edition, Elsevier Science Ltd., London; 2003
  • 32 Scott ZA, Chadwick EG, Gibson LL. et al . Infrequent detection of HIV-1-specific, but not Cytomegalovirus-specific, CD8+ T cell responses in young HIV-1-infected infants.  J Immunol. 2001;  167 7134-7140
  • 33 Scott-Algara D, Buseyne F, Blanche S. et al . Frequency and phenotyping of human immunodeficiency virus (HIV)-specific CD8+ T cells in HIV-infected children, using major histocompatibility complex class I peptide tetramers.  J Infect Dis. 2001;  183 1565-1573
  • 34 Seyfried F, Queudeville M, Eckhoff SM. et al . Intact apoptosis signalling in pediatric ALL is associated with patient outcome, low expression of anti-apoptotic molecules and long NOD/SCID engraftment.  Klin Padiatr. 2010;  222 217
  • 35 Thobakgale CF, Ramduth D, Reddy S. et al . Human immunodeficiency virus-specific CD8+ T-cell activity is detectable from birth in the majority of in utero-infected infants.  J Virol. 2007;  81 12775-12784
  • 36 Tomiyama H, Takata H, Matsuda T. et al . Phenotypic classification of human CD8+ T Cells reflecting their function: inverse correlation between quantitative expression of CD27 and cytotoxic effector function.  Eur J Immunol. 2004;  34 99-1010
  • 37 van Baarle D, Kostense S, Hovenkamp E. et al . Lack of Epstein-Barr virus- and HIV-specific CD27- CD8+ T cells is associated with progression to viral disease in HIV-infection.  AIDS. 2002;  16 2001-2011
  • 38 Wehner S, Soerensen J, Schwabe D. et al . 10-Parameter flow cytometry as a new tool to improve diagnosis and MRD follow-up of acute leukemias.  Klin Padiatr. 2009;  221 393-395

Correspondence

Dr. Daniel Delbeck

Centre for Pediatric and

Adolescent Medicine

HELIOS Klinikum Krefeld

Lutherplatz 40

47805 Krefeld

Germany

Phone: +49/2151/32 4566

Fax: +49/2151/32 2334

Email: daniel.delbeck@helios-kliniken.de