Semin Respir Crit Care Med 2011; 32(1): 003-009
DOI: 10.1055/s-0031-1272864
© Thieme Medical Publishers

Estimating Individual Risk for Lung Cancer

Carol J. Etzel1 , Peter B. Bach2
  • 1Department of Epidemiology, UT MD Anderson Cancer Center, Houston, Texas
  • 2Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
Further Information

Publication History

Publication Date:
15 April 2011 (online)

ABSTRACT

Lung cancer risk prediction models hold the promise of improving patient care and streamlining research. The ultimate goal of these models is to inform clinicians as to which interventions their individual patients should receive to reduce lung cancer–associated morbidity and mortality. In this paper, we discuss the history and current state of lung cancer prediction models, focusing on three models: the Bach model, the Spitz model, and the Liverpool Lung Project (LLP) model. We also discuss the prospects for further development of improved prediction models for lung cancer risk. Although current models can identify those smokers at highest risk for lung cancer, these models are presently of limited use in the clinical setting. Nevertheless, lung cancer risk prediction models can be used during study enrollment to select more appropriate study subjects, and may eventually be useful in identifying patients for lung cancer screening or to receive chemoprevention.

REFERENCES

  • 1 Risch H A, Howe G R, Jain M, Burch J D, Holowaty E J, Miller A B. Are female smokers at higher risk for lung cancer than male smokers? A case-control analysis by histologic type.  Am J Epidemiol. 1993;  138 (5) 281-293
  • 2 American Cancer Society .Cancer Facts and Figures 2010. Atlanta, GA: American Cancer Society; 2010
  • 3 Amos C I, Xu W, Spitz M R. Is there a genetic basis for lung cancer susceptibility?.  Recent Results Cancer Res. 1999;  151 3-12
  • 4 Peto R, Darby S, Deo H, Silcocks P, Whitley E, Doll R. Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies.  BMJ. 2000;  321 (7257) 323-329
  • 5 Gail M H, Brinton L A, Byar D P et al.. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually.  J Natl Cancer Inst. 1989;  81 (24) 1879-1886
  • 6 Tyrer J, Duffy S W, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors.  Stat Med. 2004;  23 (7) 1111-1130
  • 7 Tice J A, Cummings S R, Ziv E, Kerlikowske K. Mammographic breast density and the Gail model for breast cancer risk prediction in a screening population.  Breast Cancer Res Treat. 2005;  94 (2) 115-122
  • 8 Imperiale T F, Wagner D R, Lin C Y, Larkin G N, Rogge J D, Ransohoff D F. Risk of advanced proximal neoplasms in asymptomatic adults according to the distal colorectal findings.  N Engl J Med. 2000;  343 (3) 169-174
  • 9 Selvachandran S N, Hodder R J, Ballal M S, Jones P, Cade D. Prediction of colorectal cancer by a patient consultation questionnaire and scoring system: a prospective study.  Lancet. 2002;  360 (9329) 278-283
  • 10 Fears T R, Guerry IV D, Pfeiffer R M et al.. Identifying individuals at high risk of melanoma: a practical predictor of absolute risk.  J Clin Oncol. 2006;  24 (22) 3590-3596
  • 11 Cho E, Rosner B A, Feskanich D, Colditz G A. Risk factors and individual probabilities of melanoma for whites.  J Clin Oncol. 2005;  23 (12) 2669-2675
  • 12 Hartge P, Whittemore A S, Itnyre J, McGowan L, Cramer D. The Collaborative Ovarian Cancer Group . Rates and risks of ovarian cancer in subgroups of white women in the United States.  Obstet Gynecol. 1994;  84 (5) 760-764
  • 13 Eastham J A, May R, Robertson J L, Sartor O, Kattan M W. Development of a nomogram that predicts the probability of a positive prostate biopsy in men with an abnormal digital rectal examination and a prostate-specific antigen between 0 and 4 ng/mL.  Urology. 1999;  54 (4) 709-713
  • 14 Wu X, Lin J, Grossman H B et al.. Projecting individualized probabilities of developing bladder cancer in white individuals.  J Clin Oncol. 2007;  25 (31) 4974-4981
  • 15 Colditz G A, Atwood K A, Emmons K et al.. Harvard report on cancer prevention volume 4: Harvard Cancer Risk Index. Risk Index Working Group, Harvard Center for Cancer Prevention.  Cancer Causes Control. 2000;  11 (6) 477-488
  • 16 Bach P B, Kattan M W, Thornquist M D et al.. Variations in lung cancer risk among smokers.  J Natl Cancer Inst. 2003;  95 (6) 470-478
  • 17 Spitz M R, Hong W K, Amos C I et al.. A risk model for prediction of lung cancer.  J Natl Cancer Inst. 2007;  99 (9) 715-726
  • 18 Cassidy A, Duffy S W, Myles J P, Liloglou T, Field J K. Lung cancer risk prediction: a tool for early detection.  Int J Cancer. 2007;  120 (1) 1-6
  • 19 Woloshin S, Schwartz L M, Welch H G. The risk of death by age, sex, and smoking status in the United States: putting health risks in context.  J Natl Cancer Inst. 2008;  100 (12) 845-853
  • 20 Chen J, Pee D, Ayyagari R et al.. Projecting absolute invasive breast cancer risk in white women with a model that includes mammographic density.  J Natl Cancer Inst. 2006;  98 (17) 1215-1226
  • 21 Cook N R. Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve.  Clin Chem. 2008;  54 (1) 17-23
  • 22 Harrell Jr F E, Lee K L, Mark D B. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors.  Stat Med. 1996;  15 (4) 361-387
  • 23 Cronin K A, Gail M H, Zou Z, Bach P B, Virtamo J, Albanes D. Validation of a model of lung cancer risk prediction among smokers.  J Natl Cancer Inst. 2006;  98 (9) 637-640
  • 24 D'Amelio Jr A M, Cassidy A, Asomaning K et al.. Comparison of discriminatory power and accuracy of three lung cancer risk models.  Br J Cancer. 2010;  103 (3) 423-429
  • 25 Marshall R J. Displaying clinical data relationships using scaled rectangle diagrams.  Stat Med. 2001;  20 (7) 1077-1088
  • 26 Marshall R J. Scaled rectangle diagrams can be used to visualize clinical and epidemiological data.  J Clin Epidemiol. 2005;  58 (10) 974-981
  • 27 Marshall R J. Cardiovascular risk can be represented by scaled rectangle diagrams.  J Clin Epidemiol. 2009;  62 (9) 998-1000
  • 28 Abidoye O, Ferguson M K, Salgia R. Lung carcinoma in African Americans.  Nat Clin Pract Oncol. 2007;  4 (2) 118-129
  • 29 Etzel C J, Kachroo S, Liu M et al.. Development and validation of a lung cancer risk prediction model for African-Americans.  Cancer Prev Res (Phila). 2008;  1 (4) 255-265
  • 30 Bain C, Feskanich D, Speizer F E et al.. Lung cancer rates in men and women with comparable histories of smoking.  J Natl Cancer Inst. 2004;  96 (11) 826-834
  • 31 Bach P B. Lung cancer screening.  J Natl Compr Canc Netw. 2008;  6 (3) 271-275
  • 32 Bach P B, Jett J R, Pastorino U, Tockman M S, Swensen S J, Begg C B. Computed tomography screening and lung cancer outcomes.  JAMA. 2007;  297 (9) 953-961
  • 33 Infante M, Cavuto S, Lutman F R DANTE Study Group et al. A randomized study of lung cancer screening with spiral computed tomography: three-year results from the DANTE trial.  Am J Respir Crit Care Med. 2009;  180 (5) 445-453
  • 34 van Iersel C A, de Koning H J, Draisma G et al.. Risk-based selection from the general population in a screening trial: selection criteria, recruitment and power for the Dutch-Belgian randomised lung cancer multi-slice CT screening trial (NELSON).  Int J Cancer. 2007;  120 (4) 868-874
  • 35 Janssens ACJW, Moonesinghe R, Yang Q, Steyerberg E W, van Duijn C M, Khoury M J. The impact of genotype frequencies on the clinical validity of genomic profiling for predicting common chronic diseases.  Genet Med. 2007;  9 (8) 528-535
  • 36 Alberg A J, Samet J M. Epidemiology of lung cancer. In: Sadler M J, Callaero B, Strain J J, eds. Encyclopedia of Human Nutrition. London, England: Academic; 1998: 235-248
  • 37 Männistö S, Smith-Warner S A, Spiegelman D et al.. Dietary carotenoids and risk of lung cancer in a pooled analysis of seven cohort studies.  Cancer Epidemiol Biomarkers Prev. 2004;  13 (1) 40-48
  • 38 Gail M H. Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk.  J Natl Cancer Inst. 2008;  100 (14) 1037-1041
  • 39 Gail M H. Value of adding single-nucleotide polymorphism genotypes to a breast cancer risk model.  J Natl Cancer Inst. 2009;  101 (13) 959-963
  • 40 Spitz M R, Amos C I, D'Amelio Jr A, Dong Q, Etzel C. Re: discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk.  J Natl Cancer Inst. 2009;  101 (24) 1731-1732, author reply 1732
  • 41 Jakobsdottir J, Gorin M B, Conley Y P, Ferrell R E, Weeks D E. Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers.  PLoS Genet. 2009;  5 (2) e1000337
  • 42 Janssens ACJW, Aulchenko Y S, Elefante S, Borsboom GJJM, Steyerberg E W, van Duijn C M. Predictive testing for complex diseases using multiple genes: fact or fiction?.  Genet Med. 2006;  8 (7) 395-400
  • 43 Spitz M R, Etzel C J, Dong Q et al.. An expanded risk prediction model of lung cancer.  Can Prev Res. 2008;  1 (4) 250-254

Peter B BachM.D. 

Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center

1275 York Ave., New York, NY 10065

Email: bachp@mskcc.org