ZWR - Das Deutsche Zahnärzteblatt 2011; 120(3): 80-88
DOI: 10.1055/s-0031-1275605
CME-Fortbildung

© Georg Thieme Verlag Stuttgart · New York

Biokompatibilität dentaler Komposite

H. Schweikl
Further Information

Publication History

Publication Date:
18 March 2011 (online)

Lernziele

Der Leser sollte nach dem Durcharbeiten des Artikels

  • die Hauptkomponenten dentaler Komposite und Dentinadhäsive kennen,

  • Gründe für die Relevanz der Analyse der Biokompatibilität dentaler Komposite benennen,

  • die biologische Wirkung dentaler Monomere in vivo diskutieren können,

  • die Relevanz von oxidativem Stress für zytotoxische Effekte dentaler Monomere verstehen und

  • Grundzüge der möglichen Wirkung dentaler Monomere auf die Physiologie von Zellen des Dentin-Pulpa-Komplexes skizzieren können.

Literatur

  • 1 Dauvillier BS, Aarnts MP, Feilzer AJ. Developments in shrinkage control of adhesive restoratives.  J Esthet Dent. 2000;  12 291-299
  • 2 Demirci M, Hiller KA, Bosl C et al.. The induction of oxidative stress, cytotoxicity, and genotoxicity by dental adhesives.  Dent Mater. 2008;  24 362-371
  • 3 Durner J, Kreppel H, Zaspel J et al.. The toxicokinetics and distribution of 2-hydroxyethyl methacrylate in mice.  Biomaterials. 2009;  30 2066-2071
  • 4 Durner J, Spahl W, Zaspel J et al.. Eluted substances from unpolymerized and polymerized dental restorative materials and their Nernst partition coefficient.  Dent Mater. 2010;  26 91-99
  • 5 Eick JD, Byerley TJ, Chappell RP et al.. Properties of expanding SOC/epoxy copolymers for dental use in dental composites.  Dent Mater. 1993;  9 123-127
  • 6 Ferracane JL, Cooper PR, Smith AJ. Can interaction of materials with the dentin-pulp complex contribute to dentin regeneration?.  Odontology. 2010;  98 2-14
  • 7 Ferracane JL. Developing a more complete understanding of stresses produced in dental composites during polymerization.  Dent Mater. 2005;  21 36-42
  • 8 Ferracane JL. Resin composite-State of the art.  Dent Mater. DOI: 10.1016/j.dental 2010;  10 020
  • 9 Fleisch AF, Sheffield PE, Chinn C et al.. Bisphenol A and related compounds in dental materials.  Pediatrics. 2010;  126 760-768
  • 10 Freidig A, Hofhuis M, Van Holstijn I et al.. Glutathione depletion in rat hepatocytes: a mixture toxicity study with alpha, beta-unsaturated esters.  Xenobiotica. 2001;  31 295-307
  • 11 Galler KM, Schweikl H, Hiller KA et al.. TEGDMA reduces mineralization in dental pulp cells.  J Dent Res. DOI: 10.1177/0022034510384618 [Epub ahead of print] 2010; 
  • 12 Geukens S, Goossens A. Occupational contact allergy to (meth)acrylates.  Contact Dermatitis. 2001;  44 153-159
  • 13 Geurtsen W, Leyhausen G. Chemical-biological interactions of the resin monomer triethyleneglycol-dimethacrylate (TEGDMA).  J Dent Res. 2001;  80 2046-2050
  • 14 Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering.  Crit Rev Oral Biol Med. 2004;  15 13-27
  • 15 Hanks CT, Strawn SE, Wataha JC et al.. Cytotoxic effects of resin components on cultured mammalian fibroblasts.  J Dent Res. 1991;  70 1450-1455
  • 16 Ilie N, Hickel R. Macro-, micro- and nano-mechanical investigations on silorane and methacrylate-based composites.  Dent Mater. 2009;  25 810-819
  • 17 Kermanshahi S, Santerre JP, Cvitkovitch et al.. Biodegradation of resin-dentin interfaces increases bacterial microleakage.  J Dent Res. 2010;  89 996-1001
  • 18 Krifka S, Seidenader C, Hiller KA et al.. The generation of oxidative stress and cytotoxicity by modern dental composites.  Clin Oral Invest 2011. [Epub ahead of print]
  • 19 Marquardt W, Seiss M, Hickel R et al.. Volatile methacrylates in dental practices.  J Adhes Dent. 2009;  11 101-107
  • 20 Michelsen VB, Moe G, Strøm MB et al.. Quantitative analysis of TEGDMA and HEMA eluted into saliva from two dental composites by use of GC/MS and tailor-made internal standards.  Dent Mater. 2008;  24 724-731
  • 21 Noda M, Wataha JC, Kaga M et al.. Components of dentinal adhesives modulate heat shock protein 72 expression in heat-stressed THP-1 human monocytes at sublethal concentrations.  J Dent Res. 2002;  81 265-269
  • 22 Peutzfeldt A. Resin composites in dentistry: the monomer systems.  Eur J Oral Sci. 1997;  105 97-116
  • 23 Qin C, Baba O, Butler WT. Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis.  Crit Rev Oral Biol Med. 2004;  15 126-136
  • 24 Reichl FX, Durner J, Hickel R et al.. Uptake, clearance and metabolism of TEGDMA in guinea pigs.  Dent Mater. 2002;  18 581-589
  • 25 Reichl FX, Seiss M, Buters J et al.. Expression of CYP450-2E1 and formation of 2,3-epoxymethacrylic acid (2,3-EMA) in human oral cells exposed to dental materials.  Dent Mater. 2010;  26 1151-1156
  • 26 Samuelsen JT, Kopperud HM, Holme JA et al.. Role of thiol-complex formation in 2-hydroxyethyl- methacrylate-induced toxicity in vitro.  J Biomed Mater Res A. 2011;  96 395-401
  • 27 Schmalz G. Komposit-Kunststoffe. In: Schmalz G, Arenholt-Bindslev D, (Hrsg.) Biokompatibilität zahnärztlicher Werkstoffe. München: Elsevier-Urban & Fischer; 2005: 99-132
  • 28 Schweikl H, Schmalz G. Triethylene glycol dimethacrylate induces large deletions in the hprt gene in V79 cells.  Mutation Res. 1999;  438 71-78
  • 29 Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers.  J Dent Res. 2006;  85 870-877
  • 30 Smith AJ, Cassidy N, Perry H et al.. Reactionary dentinogenesis.  Int J Dev Biol. 1995;  39 273-280
  • 31 Technische Regeln für Gefahrstoffe (TRGS). TRGS 900 – Arbeitsplatzgrenzwerte. Im Internet: http://www.umwelt-online.de/regelwerk/t_regeln/trgs/trgs900/mak_ges.htm Stand Januar/2006
  • 32 Watson WH, Chen Y, Jones DP. Redox state of glutathione and thioredoxin in differentiation and apoptosis.  Biofactors. 2003;  17 307-314
  • 33 Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composites.  Dent Mater. 2005;  21 68-74
  • 34 Yoshii E. Cytotoxic effects of acrylates and methacrylates: relationships of monomer structures and cytotoxicity.  J Biomed Mater Res. 1997;  37 517-524

Korrespondenzadresse

Prof. Helmut Schweikl

Poliklinik für Zahnerhaltung und Parodontologie Universitätsklinikum Regensburg

Franz-Josef-Strauss-Allee 11

93042 Regensburg

Email: helmut.schweikl@klinik.uni-regensburg.de