Subscribe to RSS
DOI: 10.1055/s-0031-1281755
© Georg Thieme Verlag KG Stuttgart · New York
Cholestasis and the Role of Basolateral Efflux Pumps
Cholestase und die Bedeutung der basolateralen Effluxpumpen der HepatozytenPublication History
manuscript received: 18.8.2011
manuscript accepted: 2.9.2011
Publication Date:
02 December 2011 (online)
Zusammenfassung
Die entscheidende Triebkraft für den Gallefluss ist der ATP-abhängige Transport von Gallebestandteilen (Gallensäuren, reduziertes Glutathion, Bilirubinglucuronide u. a.) über die kanalikuläre Hepatozytenmembran in die Galle. Die funktionelle Charakterisierung, die Klonierung und die Lokalisation von Transportproteinen der Hepatozytenmembran haben entscheidend zum molekularen Verständnis von Gallefluss und intrahepatischer Cholestase beigetragen. Genetische Defekte in der menschlichen Leber und bei Ratten, Genausschaltungen bei Mäusen und die direkte Hemmung von Transportproteinen haben gezeigt, dass die Konjugatexportpumpe MRP2 (Multidrug resistance protein 2; ABCC2) und die Gallensalzexportpumpe BSEP (Bile salt export pump; ABCB11) den wichtigsten Beitrag zum Gallensäure-unabhängigen bzw. zum Gallensäure-abhängigen Gallefluss leisten. In der menschlichen Leber führen bestimmte genetische Varianten zum Verlust der Transportaktivität der Gallensalzexportpumpe BSEP und zur schweren intrahepatischen Cholestase. Effluxtransporter in der basolateralen Hepatozytenmembran, insbesondere MRP3 (Multidrug resistance protein 3; ABCC3) und MRP4 (Multidrug resistance protein 4; ABCC4), transportieren Substanzen vom Hepatozyten in das sinusoidale Blut. Diese Effluxtransporter wurden erst in den letzten Jahren identifiziert und lokalisiert. Sie kompensieren ein Missverhältnis zwischen der Aufnahme von Substanzen, z. B. Gallensäuren, über die sinusoidale Membran in die Hepatozyten und einer unzureichenden kanalikulären Sekretion bei der Cholestase. Aber auch unter physiologischen Bedingungen wird dieser basolaterale Efflux von Substanzen beobachtet und ermöglicht nicht nur eine spätere renale Ausscheidung, sondern auch eine Wiederaufnahme in benachbarte Hepatozyten entlang des Leberazinus.
Abstract
ATP-dependent transport of biliary constituents, such as bile acids, reduced glutathione, and bilirubin glucuronosides across the hepatocyte canalicular membrane into bile represents the decisive driving force for the formation of biliary fluid. Functional characterization, cloning, and localization of hepatocellular transporter proteins has provided a molecular understanding of the mechanisms underlying bile flow and intrahepatic cholestasis. Genetic variants in humans and genetic knockout in rodents, or transporter inhibition have indicated that both the conjugate export pump MRP2 (multidrug resistance protein 2; ABCC2) and the bile salt export pump BSEP (ABCB11) are major contributors to bile acid-independent and bile acid-dependent bile flow, respectively. In humans, genetic variants of BSEP, leading to an impaired transport activity or localization of the protein in the canalicular membrane, are associated with severe intrahepatic cholestasis. Efflux pumps of the basolateral hepatocyte membrane, particularly MRP3 (multidrug resistance protein 3; ABCC3) and MRP4 (multidrug resistance protein 4; ABCC4) pump substances from hepatocytes into sinusoidal blood. These efflux pumps have been recognized in recent years to play an important compensatory role in cholestasis and to contribute to the balance between uptake and efflux of substances during the vectorial transport from sinusoidal blood into bile. This sinusoidal efflux not only enables subsequent renal elimination, but also re-uptake of substances into neighboring and more centrally located hepatocytes in the sinusoid.
Schlüsselwörter
ATP-abhängiger Transport - basolaterale Hepatozytenmembran - Cholestase - Gallefluss - Gallensalz-Exportpumpe (BSEP; ABCB11) - Gallensäuren - intrahepatische Cholestase
Key words
ATP-dependent transport - basolateral hepatocyte membrane - cholestasis - bile flow - bile salt export pump (BSEP; ABCB11) - bile acids - intrahepatic cholestasis
References
- 1 Kitamura T, Jansen P, Hardenbrook C et al. Defective ATP-dependent bile canalicular transport of organic anions in mutant (TR-) rats with conjugated hyperbilirubinemia. Proc Natl Acad Sci USA. 1990; 87 3557-3561
- 2 Ishikawa T, Müller M, Klünemann C et al. ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J Biol Chem. 1990; 265 19 279-19 286
- 3 Adachi Y, Kobayashi H, Kurumi Y et al. ATP-dependent taurocholate transport by rat liver canalicular membrane vesicles. Hepatology. 1991; 14 655-659
- 4 Müller M, Ishikawa T, Berger U et al. ATP-dependent transport of taurocholate across the hepatocyte canalicular membrane mediated by a 110-kDa glycoprotein binding ATP and bile salt. J Biol Chem. 1991; 266 18 920-18 926
- 5 Nishida T, Gatmaitan Z, Che M et al. Rat liver canalicular membrane vesicles contain an ATP-dependent bile acid transport system. Proc Natl Acad Sci USA. 1991; 88 6590-6594
- 6 Meier P J, Meier-Abt A, Barrett C et al. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. J Biol Chem. 1984; 259 10 614-10 622
- 7 lnoue M, Kinne R, Tran T et al. Taurocholate transport by rat liver canalicular membrane vesicles. J Clin Invest. 1984; 73 659-663
- 8 Keppler D, Arias I M. Introduction: Transport across the hepatocyte canalicular membrane. FASEB J. 1997; 11 15-18
- 9 Keppler D. Multidrug Resistance Proteins (MRPs, ABCCs): Importance for Pathophysiology and Drug Therapy. In: Fromm M F, Kim R B, (eds) Drug Transporters; Handbook of Experimental Pharmacology, Vol. 201.. Heidelberg: Springer; 2011: 299-323
- 10 Keppler D. Uptake and efflux transporters for conjugates in human hepatocytes. Methods Enzymol. 2005; 201 531-542
- 11 Nies A T, Schwab M, Keppler D. Interplay of conjugating enzymes with OATP uptake transporters and ABCC/MRP efflux pumps in the elimination of drugs. Expert Opin Drug Metab Toxicol. 2008; 4 545-568
- 12 Stieger B. The Role of the Sodium-Taurocholate Cotransporting Polypeptide (NTCP) and of the Bile Salt Export Pump (BSEP) in Physiology and Pathobiology of Bile Formation. In: (eds) Drug Transporters; Handbook of Experimental Pharmacology, Vol. 201.. Heidelberg: Springer; 2011: 205-259
- 13 König J. Uptake Transporters of the Human OATP Family. Molecular Characteristics, Substrates, Their Role in Drug-Drug Interactions, and Functional Consequences of Polymorphisms. In: (eds) Drug Transporters; Handbook of Experimental Pharmacology, Vol. 201.. Heidelberg: Springer; 2011: 1-28
- 14 Nies A T, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflügers Arch – Eur J Physiol. 2007; 453 643-659
- 15 Arrese M, Trauner M. Molecular aspects of bile formation and cholestasis. Trends Mol Med. 2003; 9 558-564
- 16 Oude Elferink R P, Paulusma C C, Groen A K. Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterology. 2006; 130 908-925
- 17 Pauli-Magnus C, Meier P J. Hepatobiliary transporters and drug-induced cholestasis. Hepatology. 2006; 44 778-787
- 18 Paulusma C C, Bosma P J, Zaman G JR et al. Congenital jaundice in rats with a mutation in a multidrug resistance associated-protein gene. Science. 1996; 271 1126-1127
- 19 Büchler M, König J, Brom M et al. cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMRP, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. J Biol Chem. 1996; 271 15 091-15 098
- 20 Jansen P LM, Peters W HM, Lamers W H. Hereditary chronic conjugated hyperbilirubinemia in mutant rats caused by defective hepatic anion transport. Hepatology. 1985; 5 573-579
- 21 Böhme M, Müller M, Leier I et al. Cholestasis caused by inhibition of the adenosine triphosphate-dependent bile salt transport in rat liver. Gastroenterology. 1994; 107 255-265
- 22 Kubitz R, Keitel V, Häussinger D. Inborn errors of biliary canalicular transport systems. Methods Enzymol. 2005; 400 558-569
- 23 Keitel V, Burdelski M, Warskulat U et al. Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology. 2005; 41 1160-1172
- 24 Strautnieks S S, Byrne J A, Pawlikowska L et al. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology. 2008; 134 1203-1214
- 25 Keitel V, Burdelski M, Vojnisek Z et al. De novo bile salt transporter antibodies as a possible cause of recurrent graft failure after liver transplantation: a novel mechanism of cholestasis. Hepatology. 2009; 50 510-517
- 26 Jara P, Hierro L, Martinez-Fernandez P et al. Recurrence of bile salt export pump deficiency after liver transplantation. N Engl J Med. 2009; 361 1359-1367
- 27 Oude Elferink R PJ, Ottenhoff R, Liefting W et al. Hepatobiliary transport of glutathione and glutathione conjugate in rats with hereditary hyperbilirubinemia. J Clin Invest. 1989; 84 476-483
- 28 Proost J H, Nijssen H MJ, Strating C B et al. Pharmacokinetic modeling of the sinusoidal efflux of anionic ligands from the isolated perfused rat liver: the influence of albumin. J Pharmacokinet Biopharm. 1993; 21 375-394
- 29 König J, Rost D, Cui Y et al. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology. 1999; 29 1156-1163
- 30 Rius M, Nies A T, Hummel-Eisenbeiss J et al. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology. 2003; 38 374-384
- 31 Keppler D, König J, Nies A T. Conjugate export pumps of the multidrug resistance protein (MRP) family in liver. In: Arias I M, Boyer J L, Chisari F V, (eds). The Liver: Biology and Pathobiology.. New York: Lippincott Williams & Wilkins; 2001: 373-382
- 32 Akita H, Suzuki H, Hirohashi T et al. Transport activity of human MRP3 expressed in Sf9 cells: comparative studies with rat MRP3. Pharm Res. 2002; 19 34-41
- 33 Lee Y M, Cui Y, König J et al. Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3 (MRP3 /ABCC3). Pharmacogenetics. 2004; 14 213-223
- 34 Rius M, Hummel-Eisenbeiss J, Hofmann A F et al. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. Am J Physiol Gastrointest Liver Physiol. 2006; 290 G640-G649
- 35 Kruh G D, Belinsky M G. The MRP family of drug efflux pumps. Oncogene. 2003; 22 7537-7552
- 36 Zelcer N, Reid G, Wielinga P et al. Steroid and bile acid conjugates are substrates of human amultidrug-resistance protein (MRP) 4 (ATP-binding cassette C 4). Biochem J. 2003; 371 361-367
- 37 Russel F G, Koenderink J B, Masereeuw R. Multidrug resistance protein 4 (MRP4 /ABCC4):a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci. 2008; 29 200-207
- 38 Rius M, Hummel-Eisenbeiss J, Keppler D. ATP-dependent transport of leukotrienes B 4 and C 4 by the multidrug resistance protein ABCC4 (MRP4). J Pharmacol Exp Ther. 2008; 324 86-94
- 39 Mayer R, Kartenbeck J, Büchler M et al. Expression of the MRP gene-encoded conjugate export pump in liver and its selective absence from the canalicular membrane in transport-deficient mutant hepatocytes. J Cell Biol. 1995; 131 137-150
- 40 Keppler D, Kartenbeck J. The canalicular conjugate export pump encoded by the cmrp/cmoat gene. In: Boyer J L, Ockner R K, (eds). Progress in Liver Diseases.. Philadelphia: Saunders; 1996: 55-67
- 41 Donner M G, Keppler D. Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology. 2001; 34 351-359
- 42 Soroka C J, Lee J M, Azzaroli F et al. Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology. 2001; 33 783-791
- 43 Wagner M, Fickert P, Zollner G et al. Role of farnesoid X receptor in determining hepatic ABC transporter expression and liver injury in bile duct-ligated mice. Gastroenterology. 2003; 125 825-838
- 44 Jemnitz K, Veres Z, Vereczkey L. Contribution of high basolateral bile salt efflux to the lack of hepatotoxicity in rat in response to drugs inducing cholestasis in human. Toxicol Sci. 2010; 115 80-88
- 45 Wang R, Chen H L, Liu L et al. Compensatory role of P-glycoproteins in knockout mice lacking the bile salt export pump. Hepatology. 2009; 50 948-956
- 46 Chai J, Luo D, Wu X et al. Changes of organic anion transporter MRP4 and related nuclear receptors in human obstructive cholestasis. J Gastrointest Surg. 2011; 15 996-1004
- 47 Fröhling W, Stiehl A. Bile salt glucuronides: identification and quantitative analysis in the urine of patients with cholestasis. Eur J Clin Invest. 1976; 6 67-74
- 48 Stiehl A, Raedsch R, Rudolph G et al. Biliary and urinary excretion of sulfated, glucuronidated and tetrahydroxylated bile acids in cirrhotic patients. Hepatology. 1985; 5 492-495
- 49 Takikawa H, Beppu T, Seyama Y. Urinary concentrations of bile acid glucuronides and sulfates in hepatobiliary diseases. Gastroenterol Jpn. 1984; 19 104-109
- 50 Back P. Bile acid glucuronides. Isolation and identification of a chenodeoxycholic acid glucuronide from human plasma in intrahepatic cholestasis. Hoppe Seylers Z Physiol Chem. 1976; 357 213-217
- 51 Marschall H U, Wagner M, Zollner G et al. Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology. 2005; 129 476-485
- 52 Keppler D, Rius M. The concept of basolateral efflux pumps of the hepatocyte. In: Keppler D, (eds). Bile Acids: Biological Actions and Clinical Relevance.. Dordrecht: Springer and Falk Foundation; 2007: 48-52
- 53 Rius M, Nies, AT. et al .Bile salt and glutathione coefflux mediated by multidrug resistance protein MRP4 (ABCC4), a basolateral transporter of the hepatocyte. In: Paumgartner G, (eds), Bile Acid Biology and its Therapeutic Implications;. Dordrecht: Springer; 2005: 101-106
- 54 Ballatori N, Christian W V, Lee J Y et al. OSTα-OSTβ: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology. 2005; 42 1270-1279
- 55 Trauner M, Halilbasic E. Nuclear receptors as new perspective for the management of liver diseases. Gastroenterology. 2011; 140 1120-1125
- 56 Pauli-Magnus C, Meier P J, Stieger B. Genetic determinants of drug-induced cholestasis and intrahepatic cholestasis of pregnancy. Semin Liver Dis. 2010; 30 147-159
- 57 Cui Y, König J, Leier I et al. Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem. 2001; 276 9626-9630
- 58 Cui Y, König J, Keppler D. Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol Pharmacol. 2001; 60 934-943
- 59 Martínez-Ansó E, Castillo J E, Díez J et al. Immunohistochemical detection of chloride/bicarbonate anion exchangers in human liver. Hepatology. 1994; 19 1400-1406
- 60 Beuers U, Hohenester S, Buy Wenniger L J et al. The biliary HCO3- umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology. 2010; 52 1489-1496
- 61 Stefan de C, Jansen S, Bollen M. NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem Sci. 2005; 30 542-550
- 62 Kremer A E, Martens J JWW, Kulik W et al. Lysophosphatidic acid is a potential mediator of cholestatic pruritus. Gastroenterology. 2010; 139 1008-1018
- 63 Watanabe N, Tsukada N, Smith C R et al. Motility of bile canaliculi in the living animal: implications for bile flow. J Cell Biol. 1991; 113 1069-1080
Prof. Dr. Dietrich Keppler
German Cancer Research Center (DKFZ)
Im Neuenheimer Feld 280
69120 Heidelberg
Germany
Email: d.keppler@dkfz-heidelberg.de