Int J Sports Med 2012; 33(01): 76-80
DOI: 10.1055/s-0031-1285866
Genetics & Molecular Biology
© Georg Thieme Verlag KG Stuttgart · New York

MtDNA Haplogroups and Elite Korean Athlete Status

K. C. Kim
1   Biological Sciences, Dankook University, Cheonan, Republic of Korea
,
H. I. Cho
2   Sports Management, Dankook University, Cheonan, Republic of Korea
,
W. Kim
1   Biological Sciences, Dankook University, Cheonan, Republic of Korea
› Author Affiliations
Further Information

Publication History



accepted after revision 14 July 2011

Publication Date:
01 December 2011 (online)

Abstract

Mitochondrial DNA (mtDNA) variation has recently been suggested to have an association with athletic performance or physical endurance. Since mtDNA is haploid and lacks recombination, specific mutations in the mtDNA genome associated with human exercise tolerance or intolerance arise and remain in particular genetic backgrounds referred to as haplogroups. To assess the possible contribution of mtDNA haplogroup-specific variants to differences in elite athletic performance, we performed a population-based study of 152 Korean elite athletes [77 sprint/power athletes (SPA) and 75 endurance/middle-power athletes (EMA)] and 265 non-athletic controls (CON). The overall haplogroup distribution of EMA differed significantly from CON (p<0.01), but that of SPA did not. The EMA have an excess of haplogroups M* (OR 4.38, 95% CI 1.63–11.79, p=0.003) and N9 (OR 2.32, 95% CI 0.92–5.81, p=0.042), but a dearth of haplogroup B (OR 0.26, 95% CI 0.09–0.75, p=0.003) compared with the CON. Thus, our data imply that specific mtDNA lineages may provide a significant effect on elite Korean endurance status, although functional studies with larger sample sizes are necessary to further substantiate these findings.

 
  • References

  • 1 Bouchard C, Dionne FT, Simoneau JA, Boulay MR. Genetics of aerobic and anaerobic performances. Exerc Sport Sci Rev 1992; 20: 27-58
  • 2 Bouchard C, Malina RM, Perusse L. Genetics of Fitness and Physical Performance. Human Kinetics Publishers; 1997
  • 3 Brandstätter A, Peterson CT, Irwin JA, Mpoke S, Koech DK, Parson W, Parsons TJ. Mitochondrial DNA control region sequences from Nairobi (Kenya): inferring phylogenetic parameters for the establishment of a forensic database. Int J Legal Med 2004; 118: 294-306
  • 4 Castro MG, Terrados N, Reguero JR, Alvarez V, Coto E. Mitochondrial haplogroup T is negatively associated with the status of elite endurance athlete. Mitochondrion 2007; 7: 354-357
  • 5 di Prampero PE. Factors limiting maximal performance in humans. Eur J Appl Physiol 2003; 90: 420-429
  • 6 Dionne FT, Turcotte L, Thibault MC, Boulay MR, Skinner JS, Bouchard C. Mitochondrial DNA sequence polymorphism, VO2max, and response to endurance training. Med Sci Sports Exerc 1991; 23: 177-185
  • 7 Fuku N, Oshida Y, Takeyasu T, Guo LJ, Kurata M, Yamada Y, Sato Y, Tanaka M. Mitochondrial ATPase subunit 6 and cytochrome B gene polymorphisms in young obese adults. Biochem Biophys Res Commun 2002; 290: 1199-1205
  • 8 Fuku N, Park KS, Yamada Y, Nishigaki Y, Cho YM, Matsuo H, Segawa T, Watanabe S, Kato K, Yokoi K, Nozawa Y, Lee HK, Tanaka M. Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians. Am J Hum Genet 2007; 80: 407-415
  • 9 Guo LJ, Oshida Y, Fuku N, Takeyasu T, Fujita Y, Kurata M, Sato Y, Ito M, Tanaka M. Mitochondrial genome polymorphisms associated with type-2 diabetes or obesity. Mitochondrion 2005; 5: 15-33
  • 10 Harriss DJ, Atkinson G. Update – Ethical Standards in Sport and Exercise Science Research. Int J Sports Med 2011; 32: 819-821
  • 11 Jin HJ, Kwak KD, Hammer MF, Nakahori Y, Shinka T, Lee JW, Jin F, Jia X, Tyler-Smith C, Kim W. Y-chromosomal DNA haplogroups and their implications for the dual origins of the Koreans. Hum Genet 2003; 114: 27-35
  • 12 Jin HJ, Kwak KD, Hong SB, Shin DJ, Han MS, Tyler-Smith C, Kim W. Forensic genetic analysis of mitochondrial DNA hypervariable region I/II sequences: an expanded Korean population database. Forensic Sci Int 2006; 158: 125-130
  • 13 Jin HJ, Tyler-Smith C, Kim W. The peopling of Korea revealed by analyses of mitochondrial DNA and Y-chromosomal markers. PloS One 2009; 4: e4210
  • 14 Kim JH, Park KS, Cho YM, Kang BS, Kim SK, Jeon HJ, Kim SY, Lee HK. The prevalence of the mitochondrial DNA 16189 variant in non-diabetic Korean adults and its association with higher fasting glucose and body mass index. Diabet Med 2002; 19: 681-684
  • 15 Kivisild T, Rootsi S, Metspalu M, Mastana S, Kaldma K, Parik J, Metspalu E, Adojaan M, Tolk HV, Stepanov V, Golge M, Usanga E, Papiha SS, Cinnioglu C, King R, Cavalli-Sforza L, Underhill PA, Villems R. The genetic heritage of the earliest settlers persists both in Indian tribal and caste populations. Am J Hum Genet 2003; 72: 313-332
  • 16 Kivisild T, Tolk HV, Parik J, Wang Y, Papiha SS, Bandelt HJ, Villems R. The emerging limbs and twigs of the East Asian mtDNA tree. Mol Biol Evol 2002; 19: 1737-1751
  • 17 Kong QP, Bandelt HJ, Sun C, Yao YG, Salas A, Achilli A, Wang CY, Zhong L, Zhu CL, Wu SF, Torroni A, Zhang YP. Updating the East Asian mtDNA phylogeny: a prerequisite for the identification of pathogenic mutations. Hum Mol Genet 2006; 15: 2076-2086
  • 18 Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform 2002; 3: 146-153
  • 19 Maca-Meyer N, Gonzalez AM, Larruga JM, Flores C, Cabrera VM. Major genomic mitochondrial lineages delineate early human expansions. BMC Genet 2001; 2: 13
  • 20 MacArthur DG, North KN. Genes and human elite athletic performance. Hum Genet 2005; 116: 331-339
  • 21 Mikami E, Fuku N, Takahashi H, Ohiwa N, Scott RA, Pitsiladis YP, Higuchi M, Kawahara T, Tanaka M. Mitochondrial haplogroups associated with elite Japanese athlete status. Br J Sports Med 2010;
  • 22 Murakami H, Soma R, Hayashi J, Katsuta S, Matsuda M, Ajisaka R, Okada M, Kuno S. Relationship between mitochondrial DNA polymorphism and the individual differences in aerobic performance. Jpn J Physiol 2001; 51: 563-568
  • 23 Niemi AK, Majamaa K. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet 2005; 13: 965-969
  • 24 Park KS, Chan JC, Chuang LM, Suzuki S, Araki E, Nanjo K, Ji L, Ng M, Nishi M, Furuta H, Shirotani T, Ahn BY, Chung SS, Min HK, Lee SW, Kim JH, Cho YM, Lee HK. A mitochondrial DNA variant at position 16189 is associated with type 2 diabetes mellitus in Asians. Diabetologia 2008; 51: 602-608
  • 25 Poulton J, Luan J, Macaulay V, Hennings S, Mitchell J, Wareham NJ. Type 2 diabetes is associated with a common mitochondrial variant: evidence from a population-based case-control study. Hum Mol Genet 2002; 11: 1581-1583
  • 26 Romero R, Kuivaniemi H, Tromp G, Olson J. The design, execution, and interpretation of genetic association studies to decipher complex diseases. Am J Obstet Gynecol 2002; 187: 1299-1312
  • 27 Salas A, Carracedo A, Macaulay V, Richards M, Bandelt HJ. A practical guide to mitochondrial DNA error prevention in clinical, forensic, and population genetics. Biochem Biophys Res Commun 2005; 335: 891-899
  • 28 Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. Vol 2. New York: Cold Spring Harbor Laboratory Press; 1989
  • 29 Scott RA, Fuku N, Onywera VO, Boit M, Wilson RH, Tanaka M, Goodwin WH, Pitsiladis YP. Mitochondrial haplogroups associated with elite Kenyan athlete status. Med Sci Sports Exerc 2009; 41: 123-128
  • 30 Scott RA, Wilson RH, Goodwin WH, Moran CN, Georgiades E, Wolde B, Pitsiladis YP. Mitochondrial DNA lineages of elite Ethiopian athletes. Comp Biochem Physiol B Biochem Mol Biol 2005; 140: 497-503
  • 31 Tanaka M, Cabrera VM, Gonzalez AM, Larruga JM, Takeyasu T, Fuku N, Guo LJ, Hirose R, Fujita Y, Kurata M, Shinoda K, Umetsu K, Yamada Y, Oshida Y, Sato Y, Hattori N, Mizuno Y, Arai Y, Hirose N, Ohta S, Ogawa O, Tanaka Y, Kawamori R, Shamoto-Nagai M, Maruyama W, Shimokata H, Suzuki R, Shimodaira H. Mitochondrial genome variation in eastern Asia and the peopling of Japan. Genome Res 2004; 14: 1832-1850
  • 32 Tanaka M, Fuku N, Nishigaki Y, Matsuo H, Segawa T, Watanabe S, Kato K, Yokoi K, Ito M, Nozawa Y, Yamada Y. Women with mitochondrial haplogroup N9a are protected against metabolic syndrome. Diabetes 2007; 56: 518-521
  • 33 Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet 2005; 6: 389-402
  • 34 Torroni A, Achilli A, Macaulay V, Richards M, Bandelt HJ. Harvesting the fruit of the human mtDNA tree. Trends Genet 2006; 22: 339-345
  • 35 Torroni A, Huoponen K, Francalacci P, Petrozzi M, Morelli L, Scozzari R, Obinu D, Savontaus ML, Wallace DC. Classification of European mtDNAs from an analysis of three European populations. Genetics 1996; 144: 1835-1850
  • 36 Umetsu K, Tanaka M, Yuasa I, Adachi N, Miyoshi A, Kashimura S, Park KS, Wei YH, Watanabe G, Osawa M. Multiplex amplified product-length polymorphism analysis of 36 mitochondrial single-nucleotide polymorphisms for haplogrouping of East Asian populations. Electrophoresis 2005; 26: 91-98
  • 37 Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, North K. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet 2003; 73: 627-631
  • 38 Yao YG, Kong QP, Bandelt HJ, Kivisild T, Zhang YP. Phylogeographic differentiation of mitochondrial DNA in Han Chinese. Am J Hum Genet 2002; 70: 635-651