Subscribe to RSS
DOI: 10.1055/s-0031-1289549
Synthesis of Vinyllactones via Allylic Oxidation of Alkenoic Acids
Publication History
Publication Date:
19 October 2011 (online)
Abstract
A one-step access to vinyllactones is described utilizing the Pd-catalyzed allylic oxidation of alkenoic acids. The influence of ring size as well as the olefin configuration is investigated culminating in the synthesis of goniothalamin analogues.
Key words
allyl complexes - catalysis - lactones - oxidation - palladium
- Selected examples:
-
1a
Corey EJ.Guzman-Perez A.Lazerwith SE. J. Am. Chem. Soc. 1997, 119: 11769 -
1b
Jacobo SH.Chang C.-T.Lee G.-J.Lawson JA.Powell WS.Pratico D.FitzGerald GA.Rokach J.
J. Org. Chem. 2006, 71: 1370 -
1c
Mac DH.Samineni R.Petrignet J.Srihari P.Chandrasekhar S.Yadav JS.Grée R. Chem Commun. 2009, 4717 -
1d
Fischer T.Pietruszka J. Adv. Synth. Catal. 2007, 348: 4388 -
1e
Larock RC.Hightower TR. J. Org. Chem. 1993, 58: 5298 -
1f
Annby U.Stenkula M.Andersson C.-M. Tetrahedron Lett. 1993, 34: 8545 -
1g For a recent review on Pd-catalyzed
allylic C-H bond activation, see:
Liu G.Wu Y. Top. Curr. Chem. 2010, 292: 195 - Leading references:
-
2a
Stang EM.White MC. Angew. Chem. Int. Ed. 2011, 50: 547 -
2b
Stang EM.White MC. Nat. Chem. 2009, 1: 2094 -
2c
Fraunhoffer KJ.Prabagaran N.Sirois LE.White MC. J. Am. Chem. Soc. 2006, 128: 9032 -
3a
Korpak M.Pietruszka J. Adv. Synth. Catal. 2011, 353: 1420 -
3b
Bischop M.Doum V.Nordschild née Rieche ACM.Pietruszka J.Sandkuhl D. Synthesis 2010, 527 -
3c
Pietruszka J.Rieche ACM. Adv. Synth. Catal. 2008, 350: 1407 -
3d
Pietruszka J.Rieche ACM.Schöne N. Synlett 2007, 2525 -
3e
Pietruszka J.Wilhelm T. Synlett 2003, 1698 - 4
Walborsky HM.Topolski M.Hamdouchi C.Pankowski J. J. Org. Chem. 1992, 57: 6188 -
5a For
compound 9a, see:
DeMartino MP.Chen K.Baran PS. J. Am. Chem. Soc. 2008, 130: 11546 -
5b For compounds 9b-e,
see:
Kaga H.Miura M.Orito K. J. Org. Chem. 1989, 54: 3477 - 6 For a recent review, see:
Caddick S.Fitzmaurice R. Tetrahedron 2009, 65: 3325 - 7
Covell Dustin J.White MC. Angew. Chem. Int. Ed. 2008, 47: 6448 - 8
Hiebel M.-A.Pelotier B.Goekjian P.Piva O. Eur. J. Org. Chem. 2008, 713 - 9
Wang Y.-G.Kobayashi Y. Org. Lett. 2002, 4: 4615 - 10 The syn isomer
was recently utilized for the synthesis of the lyngbouillodide macrolactone
core:
Webb D.van den Heuvel A.Koegl M.Ley SV. Synlett 2009, 2320 - 11
Guerlavais V.Carroll PJ.Joullié MM. Tetrahedron: Asymmetry 2002, 13: 675 -
12a
Fürstner A.Radkowski K.Wirtz C.Goddard R.Lehmann CW.Mynott R. J. Am. Chem. Soc. 2002, 124: 7061 -
12b
Evans DA.Weber AE. J. Am. Chem. Soc. 1987, 109: 7151 -
12c
Macritchie JA.Silcock A.Willis CL. Tetrahedron: Asymmetry 1997, 8: 3895 - 13
Nagai K.Doi T.Sekiguchi T.Namatame I.Sunazuka T.Tomoda H.Omura S.Takahashi T. J. Comb. Chem. 2005, 8: 103 -
14a
Garber SB.Kingsbury JS.Gray BL.Hovedya AH. J. Am. Chem. Soc. 2000, 122: 8168 -
14b
Gessler S.Randl S.Blechert S. Tetrahedron Lett. 2000, 41: 9973 - 15
Matsuo J.-i.Aizawa Y. Tetrahedron Lett. 2005, 46: 407 -
16a
Hlubucek JR.Robertson AV. Aust. J. Chem. 1967, 20: 2199 -
16b
Bose DS.Reddy AVN.Srikanth B. Synthesis 2008, 2323 - 18 For a recent SAR study, see:
de Fatima A.Modolo LV.Conegero LS.Pilli RA.Ferreira CV.Kohn LK.de Carvalho JE. Curr. Med. Chem. 2006, 13: 3371 - 19 The synthesis of isomers of compound 25 was recently reported:
Diba AK.Noll C.Richter M.Gieseler MT.Kalesse M. Angew. Chem. 2010, 122: 8545
References and Notes
Selected Data
for Acid 23
[α]D
²0 +17.2
(c 0.96, CHCl3). IR (film): νmax = 3073,
2977, 2935, 2861, 2648, 1702, 1642, 1465, 1417, 1381, 1290, 1236,
1191, 996, 910, 812, 742 cm-¹. ¹H
NMR (600 MHz, CDCl3): δ = 1.19 (d, ³
J
Me,2 = 7.0
Hz, 3 H, CH3), 1.41-1.49 (m, 3 H, 3-Ha,
4-H), 1.66-1.73 (m, 1 H, 3-Hb), 2.05-2.09
(m, 2 H, 5-H), 2.47 (mc, 1 H, 2-H), 4.96 (ddt, ³
J
7E,6 = 10.2
Hz, ²
J
7
E
,7
Z
= 2.0
Hz, 4
J
7
E
,5 = 1.2
Hz, 1 H, 7-H
E
), 5.01
(ddd, ³
J
7
Z
,6 = 17.1
Hz, ²
J
7
Z
,7
E
= 2.0
Hz, 4
J
7
Z
,5 = 1.6
Hz, 1 H, 7-H
Z
), 5.80
(ddt, ³
J
6,7
Z
= 17.1
Hz, ³
J
6,7
E
= 10.2
Hz, ³
J
6,5 = 6.7
Hz, 1 H, 6-H), 11.5 (br s, 1 H, COOH) ppm. ¹³C
NMR (151 MHz, CDCl3): δ = 16.9 (CH3),
26.4 (C-4), 32.9 (C-3), 33.6 (C-5), 39.2 (C-2), 114.8 (C-7), 138.4
(C-6), 183.0 (C-1) ppm.
MS (EI, 70 eV): m/z (%) = 124
(2) [M - OH]+, 101
(3) [C5H8O2]+,
96 (6) [C7H13]+,
87 (13) [C4H6O2]+,
74 (100) [C3H5O2]+,
69 (90) [C4H6O]+,
55 (38) [C3H4O]+.
Anal. Calcd for C8H14O2 (142.20):
C, 67.57; H, 9.92. Found: C, 67.52; H, 10.02.
Selected Data for Vinyllactone 25
¹9
IR
(film): νmax = 3027, 2967, 2935, 2875,
1729, 1599, 1578, 1495, 1450, 1376, 1363, 1239, 1184, 1100, 1073,
1011, 969, 933, 749, 694 cm-¹. MS (EI,
70 eV): m/z (%) = 216
(73) [M]+, 187 (5) [C13H16O]+,
160 (7) [C11H12O]+,
146 (37) [C10H10O]+,
129 (77) [C10H10]+,
115 (54) [C9H8]+,
104 (100) [C8H7]+,
91 (61) [C7H6]+,
77 (30) [C6H5]+,
56 (80) [C4H8]+. Anal.
Calcd for C14H16O2 (216.28): C,
77.75; H, 7.46. Found: C, 77.52; H, 7.35.
Isomer
25a
[α]D
²0 +18.2
(c 0.60, CHCl3). ¹H
NMR (600 MHz, CDCl3): δ = 1.35 (d, ³
J
Me,3 = 7.1
Hz, 3 H, CH3), 1.63-1.70 (m, 1 H, 4-Ha),
1.78-1.85 (m, 1 H, 5-Ha), 2.08-2.12
(m, 2 H, 4-Hb, 5-Hb), 2.53 (ddq, ³
J
3,4a = 8.8
Hz, ³
J
3,4b = 7.0
Hz, ³
J
3,Me = 7.0 Hz,
1 H, 3-H), 4.97 (dddd, ³
J
6,5a = 10.9
Hz, ³
J
6,1
′ = 6.2
Hz, ³
J
6,5b = 3.4
Hz, 4
J
6,2
′ = 1.4
Hz, 1 H, 6-H), 6.21 (dd, ³
J
1
′
,2
′ = 16.0
Hz, ³
J
1
′
,6 = 6.2
Hz, 1 H, 1′-H), 6.66 (dd, ³
J
2
′
,1
′ = 16.0
Hz, 4
J
2
′
,6 = 1.4
Hz, 1 H, 2′-H), 7.25-7.28 (m, 1 H, arom. 4-CH),
7.31-7.34 (m, 2 H, arom. CH), 7.37-7.39 (m, 2
H, arom. CH) ppm. ¹³C NMR (151 MHz,
CDCl3): δ = 14.3
(CH3), 28.2 (C-4), 29.5 (C-5), 36.0 (C-3), 81.5 (C-6),
126.6 (arom. CH), 127.5 (C-1′), 128.1 (arom. 4-CH), 128.7
(arom. CH), 131.9 (C-2′), 136.0 (arom. Cipso),
174.0 (C-2) ppm.
Isomer 25b
[α]D
²0 +29.2
(c 1.35, CHCl3). ¹H
NMR (600 MHz, CDCl3): δ = 1.27
(d, ³
J
Me,3 = 6.8
Hz, 3 H, CH3), 1.58-1.64 (m, 1 H, 4-Ha),
1.82-1.89 (m, 1 H, 5-Ha), 2.05-2.16
(m, 2 H, 4-Hb, 5-Hb), 2.66 (ddq, ³
J
3,4a = 10.5
Hz, ³
J
3,4b = 7.8 Hz, ³
J
3,Me = 6.8 Hz,
1 H, 3-H), 5.00 (dddd, ³
J
6,5a = 9.9
Hz, ³
J
6,1
′ = 6.0
Hz, ³
J
6,5b = 4.0
Hz, 4
J
6,2
′ = 1.4
Hz, 1 H, 6-H), 6.20 (dd, ³
J
1
′
,2
′ = 16.0
Hz, ³
J
1
′
,6 = 6.0
Hz, 1 H, 1′-H), 6.67 (dd, ³
J
2
′
,1
′ = 16.0
Hz, 4
J
2
′
,6 = 1.4
Hz, 1 H, 2′-H), 7.25-7.28 (m, 1 H, arom. 4-CH),
7.31-7.34 (m, 2 H, arom. CH), 7.37-7.39 (m, 2
H, arom. CH) ppm. ¹³C NMR (151 MHz,
CDCl3): δ = 16.4
(CH3), 25.4 (C-4), 27.5 (C-5), 33.7 (C-3), 78.3
(C-6),
126.4 (arom. CH), 126.6 (C-1′), 128.1 (arom. 4-CH), 128.7
(arom. CH), 132.1 (C-2′), 136.0 (arom. Cipso),
175.4 (C-2) ppm.
Selected Data for
Goniothalamin Analogue 26
[α]D
²0 -152.5
(c 1.5, CHCl3). IR (film): νmax = 3028,
2926, 1710, 1599, 1578, 1495, 1450, 1362, 1338, 1230, 1144, 1109,
1081, 1042, 1014, 968, 918, 861, 753, 731, 693 cm-¹. ¹H
NMR (600 MHz, CDCl3): δ = 1.95
(dt, 4
J
Me,4 = 2.2
Hz, 5
J
Me,5 = 1.5
Hz, 3 H, CH3), 2.48-2.52 (m, 2 H, 5-H), 5.05 (mc,
1 H, 6-H), 6.27 (dd, ³
J
1
′
,2
′ = 15.9
Hz, ³
J
1
′
,6 = 6.3
Hz, 1 H, 1′-H), 6.61 (mc, 1 H, 4-H), 6.71 (dd, ³
J
2
′
,1
′ = 15.9
Hz, 4
J
2
′
,6 = 1.4
Hz, 1 H, 2′-H), 7.26-7.29 (m, 1 H, arom. 4-CH), 7.32-7.34
(m, 2 H, arom. CH), 7.38-7.40 (m, 2 H, arom. CH) ppm. ¹³C
NMR (151 MHz, CDCl3): δ = 17.1
(CH3), 30.3 (C-5), 78.0 (C-6), 126.0 (C-1′),
126.9, 128.3, 128.8 (arom. CH), 128.9 (C-3), 132.8 (C-2′),
135.9 (arom. Cipso), 138.5 (C-4), 165.5 (C-2) ppm. MS
(EI, 70 eV): m/z (%) = 214
(36) [M]+, 186 (10) [C12H11O2]+,
171 (4) [C13H14]+,
129 (12) [C10H10]+,
115 (11) [C9H8]+,
104 (21) [C8H7]+,
89 (29) [C7H6]+,
82 (100) [C5H6O]+,
54 (24) [C4H6]+.