Synlett 2011(19): 2891-2895  
DOI: 10.1055/s-0031-1289553
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Explorations of [4+2] and [5+2] Cycloadditions of Dienylcyclopropane Derived Enzymatically from Cyclopropylbenzene

Jason Reed Hudlicky, John Hopkins-Hill, Tomas Hudlicky*
Department of Chemistry and Centre for Biotechnology, Brock University, 500 Glenridge Avenue, St. Catharines, ON, L2S 3A1, Canada
e-Mail: thudlicky@brocku.ca;
Further Information

Publication History

Received 18 September 2011
Publication Date:
25 October 2011 (online)

Abstract

Fermentation of cyclopropylbenzene with E. coli JM109(pDTG601a) furnished optically pure 1-cyclopropyl-2,3-dihydroxycyclohexa-4,6-diene whose reactivity in [4+2]- and [5+2]-cycloaddition chemistry was explored.

    References and Notes

  • 1 Endoma MA. Bui VP. Hansen J. Hudlicky T. Org. Process Res. Dev.  2002,  6:  525 
  • 2a Gibson DT. Zentralbl. Bakt.  1976,  157 
  • 2b Jeffrey AM. Yah HJC. Jerina DM. Patel TR. Davey JF. Gibson DT. Biochemistry  1975,  14:  575 
  • 3 Hudlicky T. Reed JW. Synlett  2009,  685 
  • For reviews on applications of these compounds to synthesis, see:
  • 4a Hudlicky T. Reed JW. Chem. Soc. Rev.  2009,  38:  3117 
  • 4b

    Ref. 3 above.

  • 4c Boyd DR. Bugg TDH. Org. Biomol. Chem.  2006,  4:  181 
  • 4d Johnson RA. Org. React. (N.Y.)  2004,  63:  117 
  • 4e Hudlicky T. Gonzalez D. Gibson DT. Aldrichimica Acta  1999,  32:  35 
  • 4f Hudlicky T. Entwistle DA. Pitzer KK. Thorpe AJ. Chem. Rev.  1996,  96:  1195 
  • 4g Hudlicky T. Reed JW. In Advances in Asymmetric Synthesis   Vol. 1:  Hassner A. JAI Press; London: 1995.  p.271 
  • 4h Brown SM. Hudlicky T. In Organic Synthesis: Theory and Applications   Vol. 2:  Hudlicky T. JAI Press; London: 1993.  p.113 
  • For large-scale preparation (ca. 100-g scale) of this compound from cinnamyl aldehyde, see:
  • 5a Petersen RJ. Skell PS. Org. Synth.  1967,  47:  98 
  • 5b Petersen RJ. Skell PS. Org. Synth., Coll. Vol. V   Wiley; New York: 1973.  p.929 
  • 6 Bui VP. Nguyen M. Hansen J. Baker J. Hudlicky T. Can. J. Chem.  2002,  80:  708 
  • 7 Beckwith ALJ. Bowry VW. J. Am. Chem. Soc.  1994,  116:  2710 
  • 8 Finn KJ. Rochon L. Hudlicky T. Tetrahedron: Asymmetry  2005,  16:  3606 
  • 9 Hudlicky T. Boros EE. Olivo HF. Merola JS. J. Org. Chem.  1992,  57:  1026 
  • 10 Ley SV. Redgrave AJ. Taylor SC. Ahmed S. Ribbons DW. Synlett  1991,  741 
  • 11a Pittol CA. Pryce RJ. Roberts SM. Ryback G. Sik V. Williams JO. J. Chem. Soc., Perkin Trans. 1  1989,  1160 
  • 11b Mahon MF. Molloy K. Pittol CA. Pryce RJ. Roberts SM. Ryback G. Sik V. Williams JO. Winders JA. J. Chem. Soc., Perkin Trans. 1  1991,  1255 
  • 12 Hudlicky T. Boros CH. Tetrahedron Lett.  1993,  34:  2557 
  • 13a Hudlicky T. Olivo HF. Tetrahedron Lett.  1991,  32:  6077 
  • 13b Hudlicky T. Olivo HF. McKibben B. J. Am. Chem. Soc.  1994,  116:  5108 
  • 14 Fabris F. Collins J. Sullivan B. Leisch H. Hudlicky T. Org. Biomol. Chem.  2009,  7:  2619 
  • 15a Marradi M. Synlett  2005,  1195 
  • 15b Ritter AR. Miller MJ. Org. Chem.  1994,  59:  4602 
  • 15c Zimmer R. Reissig H.-U. J. Org. Chem.  1992,  57:  339 
  • 16 Werner L. Machara A. Hudlicky T. Adv. Synth. Catal.  2010,  352:  195 
  • 17 Hudlicky JR. Werner L. Semak V. Simionescu R. Hudlicky T. Can. J. Chem.  2011,  89:  535 
  • 18 Sullivan B. Carrera I. Drouin M. Hudlicky T. Angew. Chem. Int. Ed.  2009,  48:  4229 
  • 19 Werner L. Hudlicky JR. Wernerova M. Hudlicky T. Tetrahedron  2010,  3761 
  • See, for example:
  • 20a Mehta G. Ramesh SS. Can. J. Chem.  2005,  83:  581 
  • 20b Mehta G. Senaiar RS. Bera MK. Chem. Eur. J.  2003,  9:  2264 
  • 20c Desjardins M. Lallemand M.-C. Hudlicky T. Abboud KA. Synlett  1997,  728 
  • 20d For a definition of cyclitol, conduritol, and conduramine, see: Duchek J. Adams DR. Hudlicky T. Chem. Rev.  2011,  111:  4223 
  • 21 For a recent review of the chemistry of vinylcyclopropanes, see: Hudlicky T. Reed JW. Angew. Chem. Int. Ed.  2010,  49:  4864 
  • For [5+2] annulation of vinylcyclopropanes with alkynes, see:
  • 22a Wender PA. Takahashi H. Witulski B. J. Am. Chem. Soc.  1995,  117:  4720 
  • 22b Wender PA. Claudia M. Barzilay CM. Dyckman AJ. J. Am. Chem. Soc.  2001,  123:  179 
  • 22c Liu P. Cheong PH.-Y. Yu Z.-X. Wender PA. Houk KN. Angew. Chem. Int. Ed.  2008,  47:  3939 
  • 22d Wender PA. Sirois LE. Stemmler RT. Williams TJ. Org. Lett.  2010,  12:  1604 
23

Selected Experimental Procedures 1-{4-Cyclopropyl-2,2-dimethyl-3a,4,7,7a-tetrahydro-4,7-(epoxyimino)benzo [ d ][1,3]dioxol-8-yl}ethanone (12): To a solution of diol 6 (0.50 g, 3.28 mmol) in 2,2-dimethoxypropane was added a catalytic amount of p-toluenesulfonic acid. After 5 min, the reaction was quenched with the addition of solid NaHCO3 (100 mg). The reaction mixture was then diluted with MeOH-H2O (4:1; 30 mL) and sodium periodate (1.70 g, 8.13 mmol) was added in one portion. The resulting solution was then cooled to 0 ˚C and a solution of acetohydroxamic acid (0.61 g, 8.13 mmol) in MeOH (30 mL) was added dropwise over 10 min. The solution was allowed to warm to r.t. and the stirring was continued for 17 h at r.t. After consumption of starting material, the reaction mixture was filtered and concentrated in vacuo. The oily residue was then diluted with EtOAc, and the organic solution was washed with sat. aq. NaHCO3 followed by brine. The organic solution was dried over MgSO4. The crude material was then purified by suction column chromatography to yield oxazine 12 (0.65 g, 75%) as an oil which slowly solidified.
Large-Scale Preparation of Oxazine 12: Dimethoxypropane (15 mL) was cooled to 0 ˚C and a crystal of p-TsOH was added. After 2 min diol 6 (5.0 g, 0.033 mol) dissolved in acetone-EtOAc (15 mL) was added dropwise over 5 min. TLC analysis indicated full conversion to acetonide 7 accompanied by 5-10% of 2-cyclopropylphenol resulting from aromatization of diol 6. The solution was diluted with EtOAc (20 mL), washed once with 1 N NaOH (3 mL), and added to a solution of NaIO4 (17.0 g, 0.081 mol, 2.5 equiv) in MeOH-H2O (4:1; 250 mL) cooled to 0 ˚C in
1-L Erlenmeyer flask. Acetohydroxamic acid (6.1 g, 0.081 mol, 2.5 equiv) dissolved in MeOH-H2O (4:1; 100 mL) was added with vigorous stirring over 15 min. A thick white precipitate formed immediately. The reaction mixture was allowed to warm to r.t. over 1 h and the stirring was continued for 1 h at r.t. at which time the mixture was filtered, the precipitate was washed with EtOAc (200 mL) and the solution was washed with brine (2 × 100 mL), sat. NaHCO3 (2 × 100 mL), dried over Na2SO4, and evaporated. The crude product, containing 5-10% of 2-cyclopropyl-phenol, was purified by chromatography (silica, gradient elution, hexane to hexane-EtOAc, 3:1) to furnish oxazine 12 (5.4 g, 64%) as an oil that slowly solidified. Repetition on 10-gram scale gave the oxazine (7.12 g, 57%). Recrystallization from EtOAc-pentane gave white needles. 12: R f 0.27 (hexane-EtOAc, 4:1); mp 44-46 ˚C (EtOAc-pentane); [α]²0 D -20.5 (c = 1.0, CHCl3). IR (CHCl3): 3691, 3011, 2419, 1731, 1655, 1618, 1375, 1270, 1088, 1064, 760 cm. ¹H NMR (300 MHz, CDCl3): δ = 6.32 (dd, J = 8.0, 6.3 Hz, 1 H), 5.90 (d, J = 8.1 Hz, 1 H), 5.20-5.28 (m, 1 H), 4.32 (dd, J = 6.6, 4.5 Hz, 1 H), 4.13 (d, J = 6.9 Hz, 1 H), 1.79 (s, 3 H), 1.13 (s, 7 H), 0.37-0.59 (m, 4 H). ¹³C NMR (75 MHz, CDCl3): δ = 171.2, 131.3, 131.0, 110.6, 79.9, 77.7, 73.3, 49.7, 25.7, 25.4, 21.5, 13.7, 1.1, 0.5. MS (EI+): m/z (%) = 265 (13), 250 (23), 207 (48), 178 (30), 135 (43), 123 (54), 118 (68), 107 (58), 91 (52), 85 (54). HRMS (EI+): m/z calcd for C14H19NO4: 265.1314; found: 265.1317. Anal. Calcd for C14H19NO4: C, 63.38; H, 7.22. Found: C, 62.92; H, 7.07.
N -{(3a S ,4 R ,7 S ,7a S )-7-Cyclopropyl-7-hydroxy-2,2-dimethyl-3a,4,7,7a-tetrahydrobenzo[ d ][1,3]dioxol-4-yl}acetamide (16): To a solution of oxazine 12 (248 mg, 0.94 mmol) in MeCN (7.5 mL) and distilled H2O (0.5 mL) was added molybdenum hexacarbonyl (371 mg, 1.40 mmol) in one portion. The resulting suspension was immersed in an oil bath and heated to reflux. At reflux, the mixture changed from a clear suspension to a black solution, which was allowed to reflux for 2 h. Progress of the reaction was monitored by TLC (EtOAc). After consumption of the starting material was complete, the reaction mixture was removed from the oil bath and allowed to cool to r.t. The reaction mixture was then filtered through a plug of Celite using EtOAc as the eluent and concentrated in vacuo.
The crude material was then purified via flash column chromatography (EtOAc) to yield amido alcohol 16 (138 mg, 55%) as a white powder; R f 0.29 (EtOAc); mp 189-192 ˚C (EtOAc); [α]²0 D -93.8 (c = 1.0, CHCl3). IR (CHCl3): 3404, 3009, 2511, 1661, 1512, 1415, 1382, 1243, 1064, 759 cm. ¹H NMR (600 MHz, MeOD): δ = 5.79 (d, J = 10.2 Hz, 1 H), 5.75 (dd, J = 10.2, 4.2 Hz, 1 H), 4.45 (td, J = 3.6, 1.2 Hz, 1 H), 4.27 (m, 2 H), 1.97 (s, 3 H), 1.43 (s, 3 H), 1.36 (s, 3 H), 1.19-1.26 (m, 1 H), 0.47-0.53 (m, 1 H), 0.35-0.47 (m, 3 H). ¹³C NMR (150 MHz, MeOD): δ = 171.2, 133.9, 128.6, 108.3, 81.1, 76.9, 69.8, 48.8, 25.9, 23.8, 21.5, 16.3, -0.4,
-0.9. MS (FAB+): m/z (%) = 268 (5), 250 (85), 192 (49), 150 (98), 105 (26), 69 (70), 43 (100). HRMS (FAB+): m/z calcd for C14H21NO4: 267.1471; found: 267.1471. Anal. Calcd for C14H21NO4: C, 62.90; H, 7.92. Found: C, 63.01; H, 7.93.