Subscribe to RSS
DOI: 10.1055/s-0031-1289733
Regioselective Reactions of Ethyl (4,5-Dihydrofuran-3-yl)-2-oxoacetate and Ethyl 2-(3,4-Dihydro-2H-pyran-6-yl)-2-oxoacetate with 1-Unsubstituted Aminoazoles
Publication History
Publication Date:
01 March 2012 (online)
Abstract
The reactions of ethyl (4,5-dihydrofuran-3-yl)-2-oxoacetate and ethyl 2-(3,4-dihydro-2H-pyran-6-yl)-2-oxoacetate, as 1,3-bielectrophiles, with N-unsubstituted 5-aminoazoles, as N-C-N-binucleophiles, are the subject of this work. Regioselective heterocyclizations of ethyl 2-(3,4-dihydro-2H-pyran-6-yl)-2-oxoacetate lead to 3-hydroxypropyl-7-ethoxycarbonyl substituted pyrazolo[1,5-a]pyrimidines and triazolo[1,5-a]pyrimidines whilst the corresponding reactions of ethyl (4,5-dihydrofuran-3-yl)-2-oxoacetate result in the formation of oxodihydropyrano[4,3-e] annulated products.
Key words
lactones - aminoazoles - heterocyclization - pyrazolo[1,5-a]pyrimidines - triazolo[1,5-a]pyrimidines
-
1a
Effenberger F.Maier R.Schoenwaelder K.-H.Ziegler T. Chem Ber. 1982, 115: 2766 -
1b
Stetter H.Lorenz G. Chem. Ber. 1985, 118: 1115 -
1c
Hojo M.Masuda R.Sakaguchi S.Takagawa M. Synthesis 1986, 1016 - For some examples, see:
-
2a
Zhu S.Xu G.Qin C.Chu Q.Xu Y. Monatsh. Chem. 1999, 130: 671 -
2b
Mellor JM.Reid G.El-Sagheer AH.El-Tamany E.-SH. Tetrahedron 2000, 56: 10039 -
2c
Chu Q.Song L.Jin G.Zhu S. J. Fluorine Chem. 2001, 108: 51 -
2d
Zanatta N.Barichello R.Pauletto MM.Bonacorso HG.Martins MAP. Tetrahedron Lett. 2003, 44: 961 -
2e
Zhu S.Jin G.Jiang H. Can. J. Chem. 2005, 83: 2127 -
2f
Tarasenko KV.Gerus II.Kukhar VP. J. Fluorine Chem. 2007, 128: 1264 -
2g
Mamat C.Pundt T.Dang THT.Klassen R.Reinke H.Koeckerling M.Langer P. Eur. J. Org. Chem. 2008, 492 -
2h
Zanatta N.Wouters AD.Fantinel L.Da Silva FM.Barichello R.Bonacorso HG.Martins MAP.Da Silva PEA.Ramos DF. Synlett 2009, 755 -
3a
Colla A.Martins MAP.Clar G.Krimmer S.Fischer P. Synthesis 1991, 483 -
3b
Jones BG.Branch SK.Thompson AS.Threadgill MD. J. Chem. Soc., Perkin Trans. 1 1996, 2685 -
3c
Zhu S.Qin C.Xu G.Chu Q.Huang Q. J. Fluorine Chem. 1999, 9: 141 -
3d
Song L.-P.Chu Q.-L.Zhu S.-Z. J. Fluorine Chem. 2001, 107: 107 -
3e
Zanatta N.Cortelini M de FM.Carpes MJS.Bonacorso HG.Martins MAP. J. Heterocycl. Chem. 1997, 34: 509 -
3f
Zanatta N.Fagundes MB.Ellensohn R.Marques M.Bonacorso HG.Martins MAP. J. Heterocycl. Chem. 1998, 35: 451 -
3g
Zanatta N.Lopes ECS.Fantinel L.Bonacorso HG.Martins MAP. J. Heterocycl. Chem. 2002, 39: 943 -
3h
Zanatta N.Rosa LS.Cortelini MFM.Beux S.Santos APD.Bonacorso HG.Martins MAP. Synthesis 2002, 2404 -
3i
Zanatta N.Amaral SS.Esteves-Souza A.Echevarria A.Brondani PB.Flores DC.Bonacorso HG.Flores AFC.Martins MAP. Synthesis 2006, 2305 -
3j
Zanatta N.Silva FM.Rosa LS.Jank L.Bonacorso HG.Martins MAP. Tetrahedron Lett. 2007, 48: 6531 -
3k
Zanatta N.Madruga CC.Marisco PC.Da Rosa LS.Fernandes L. da S.Flores DC.Flores AFC.Burrow RA.Bonacorso HG.Martins MAP. J. Heterocycl. Chem. 2008, 45: 221 -
3l
Zanatta N.Fantinel L.Lourega RV.Bonacorso HG.Martins MAP. Synthesis 2008, 358 -
3m
Bonacorso HG.Porte LMF.Paim GR.Luz FM.Martins MAP.Zanatta N. Tetrahedron Lett. 2010, 51: 3759 -
4a
Gaulon C.Gizecki P.Dhal R.Dujardin G. Synlett 2002, 952 -
4b
Vu NQ.Gree D.Gree R.Brown E.Dujardin G. Tetrahedron Lett. 2003, 44: 6425 -
5a
Chen C.Wilcoxen KM.Huang CQ.Xie Y.-F.McCarthy JR.Webb TR.Zhu Y.-F.Saunders J.Liu X.-J.Chen T.-K.Bozigian H.Grigoriadis DE. J. Med. Chem. 2004, 47: 4787 -
5b
McCluskey A.Keller PA.Morgan J.Garner J. Org. Biomol. Chem. 2003, 1: 3353 -
6a
Selleri S.Bruni F.Costagli C.Costanzo A.Guerrini G.Ciciani G.Gratteri P.Besnard F.Costa B.Montali M.Martini C.Fohlin J.De Siena G.Aiello PA. J. Med. Chem. 2005, 48: 6756 -
6b
Lippa A.Czobor P.Stark J.Beer B.Kostakis E.Gravielle M.Bandyopadhyay S.Russek SJ.Gibbs TT.Farb DH.Skolnick P. Proc. Natl. Acad. Sci. U.S.A. 2005, 102: 7380 -
6c
Platt DM.Duggan A.Spealman RD.Cook JM.Li X.Yin W.Rowlett JK. J. Pharmacol. Exp. Ther. 2005, 313: 658 -
6d
Foster AC.Pelleymounter MA.Cullen MJ.Lewis D.Joppa M.Chen TK.Bozigian HP.Gross RS.Gogas KR. J. Pharmacol. Exp. Ther. 2004, 311: 547 -
6e
Sullivan SK.Petroski RE.Verge G.Gross RS.Foster AC.Grigoriadis DE. J. Pharmacol. Exp. Ther. 2004, 311: 537 -
6f
Sanger DJ. CNS Drugs 2004, 18: 9 -
6g
Hoepping A.Diekers M.Deuther-Conrad W.Scheunemann M.Fischer S.Hiller A.Wegner F.Steinbach J.Brust P. Bioorg. Med. Chem. 2008, 16: 1184 -
7a
Lager E.Andersson P.Nilsson J.Pettersson I.Ostergaard E.Nielsen M.Sterner O.Liljefors T. J. Med. Chem. 2006, 49: 2526 -
7b
Selleri S.Gratteri P.Costagli C.Bonaccini C.Costanzo A.Melani F.Guerrini G.Ciciani G.Costa B.Spinetti F.Martini C.Bruni F. Bioorg. Med. Chem. 2005, 13: 4821 - 8
Gentles RG.Hu S.Huang Y.Grant-Young K.Poss MA.Andres C.Fiedler T.Knox R.Lodge N.Weaver D.Harden DG. Bioorg. Med. Chem. Lett. 2008, 18: 5694 - 9
Zhou H.-B.Sheng S.Compton DR.Kim Y.Joachimiak A.Sharma S.Carlson KE.Katzenellenbogen BS.Nettles KW.Greene GL.Katzenellenbogen JA. J. Med. Chem. 2007, 50: 399 - 10
Altenbach RJ.Liu H.Banfor PN.Browman KE.Fox GB.Fryer RM.Komater VA.Krueger KM.Marsh K.Miller TR.Pan JB.Pan L.Sun M.Thiffault C.Wetter J.Zhao C.Zhou D.Esbenshade TA.Hancock AA.Cowart MD. J. Med. Chem. 2007, 50: 5439 - 11
Shen HC.Hammond ML.Tata JR.Colletti SL.Taggart AKP.Wilsie LC.Waters MG. Bioorg. Med. Chem. Lett. 2008, 18: 4948 - 12
Frey RR.Curtin ML.Albert DH.Glaser KB.Pease LJ.Soni NB.Bouska JJ.Reuter D.Stewart KD.Marcotte P.Bukofzer G.Li J.Davidsen SK.Michaelides MR. J. Med. Chem. 2008, 51: 3777 - 13
Dwyer MP.Paruch K.Alvarez C.Doll RJ.Keertikar K.Duca J.Fischmann TO.Hruza A.Madison V.Lees E.Parry D.Seghezzi W.Sgambellone N.Shanahan F.Wiswell D.Guzi TJ. Bioorg. Med. Chem. Lett. 2007, 17: 6216 -
14a
Mukaiyama H.Nishimura T.Shiohara H.Kobayashi S.Komatsu Y.Kikuchi S.Tsuji E.Kamada N.Ohnota H.Kusama H. Chem. Pharm. Bull. 2007, 55: 881 -
14b
Mukaiyama H.Nishimura T.Kobayashi S.Komatsu Y.Kikuchi S.Ozawa T.Kamada N.Ohnota H. Bioorg. Med. Chem. 2008, 16: 909 -
15a
Di Grandi MJ.Berger DM.Hopper DW.Zhang C.Dutia M.Dunnick AL.Torres N.Levin JI.Diamantidis G.Zapf CW.Collins K.Frommer E. Bioorg. Med. Chem. Lett. 2009, 19: 6957 -
15b
Gopalsamy A.Ciszewski G.Shi M.Berger D.Hu Y.Lee F.Feldberg L.Frommer E.Kim S.Collins K.Wojciechowicz D.Mallon R. Bioorg. Med. Chem. Lett. 2009, 19: 6890 ; and references cited therein - 16
Cuny GD.Yu PB.Laha JK.Xing X.Liu J.-F.Lai CS.Deng DY.Sachdanandan C.Bloch KD.Peterson RT. Bioorg. Med. Chem. Lett. 2008, 18: 4388 - 17
Edmondson SD.Mastracchio A.Mathvink RJ.He J.Harper B.Park Y.-J.Beconi M.Di Salvo J.Eiermann GJ.He H.Leiting B.Leone JF.Levorse DA.Lyons K.Patel RA.Patel SB.Petrov A.Scapin G.Shang J.Roy RS.Smith A.Wu JK.Xu S.Zhu B.Thornberry NA.Weber AE. J. Med. Chem. 2006, 49: 3614 - 18
Shaaban MR.Saleh TS.Mayhoub AS.Mansour A.Farag AM. Bioorg. Med. Chem. 2008, 16: 6344 - 19
Wang YD.Honores E.Wu B.Johnson S.Powell D.Miranda M.McGinnis JP.Discafani C.Rabindran SK.Cheng W.Krishnamurthy G. Bioorg. Med. Chem. 2009, 17: 2091 - 20
Li J.Zhao YF.Zhao XL.Yuan XY.Gong P. Arch. Pharm. Chem. Life Sci. 2006, 339: 593 -
21a
Gregg BT.Tymoshenko DO.Razzano DA.Johnson MR. J. Comb. Chem. 2007, 9: 507 -
21b
Sagar R.Park SB. J. Org. Chem. 2008, 73: 3270 - 23
Sheldrick GM. Acta Crystallogr. Sect. A. 2008, 64: 112
References
Crystal data for 13d: colorless crystals, C15H19N3O5, M = 321.33, triclinic, space group = P 1. At 293 K, a = 4.922(1) Å, b = 13.569(2) Å, c = 23.370(4) Å, α = 90.12(1)˚, β = 94.30(2)˚, γ = 92.94(2)˚, V = 1554.3(5) ų, Z = 4, d calcd = 1.373 g/cm³, µ(MoKα) = 0.104 mm-¹, F(000) = 680. Intensities of 18299 reflections (9005 independent, R int = 0.024) were measured on an Xcalibur-3 diffractometer (graphite monochromated MoKα radiation, CCD detector, ω-scaning, 2θmax = 60˚). Crystal data for 13f: colorless crystals, C13H16N4O5, M = 308.30, monoclinic, space group = P21/c. At 293 K, a = 9.0325(4) Å, b = 18.6803(6) Å, c = 9.5238(4) Å, α = 109.879(5)˚, V = 1511.2(1) ų, Z = 4, d calcd = 1.355 g/cm³, µ(MoKα) = 0.106 mm-¹, F(000) = 648. Intensities of 17049 reflections (4400 independent, R int = 0.027) were measured on an Xcalibur-3 diffractometer (graphite monochromated MoKα radiation, CCD detector, ω-scanning, 2θmax = 60˚). The structures were solved by direct methods using the SHELXTL package.²³ Restrictions on the bond lengths C(sp³)-C(sp³) (1.54 Å) were applied during the refinement of structure 13d. The positions of the hydrogen atoms were located from electron density difference maps and refined using the riding model with Uiso = nUeq of the carrier atom (n = 1.5 for methyl and hydroxy groups and n = 1.2 for other hydrogen atoms). The hydrogen atom involved in formation of the intermolecular hydrogen bond in structure 13f was refined within isotropic approximation. Full-matrix least-squares refinement of the structures against F ² in anisotropic approximation for non-hydrogen atoms using 8831 (13d) and 4364 (13f) reflections was converged to wR2 = 0.262 (R1 = 0.076 for 4111 reflections with F>4s(F), S = 0.957) for structure 13d, and wR2 = 0.122 (R1 = 0.045 for 2326 reflections with F>4s(F), S = 0.910) for structure 13f. The final atomic coordinates, and crystallographic data for molecules 13d and 13f have been deposited at the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK [fax: +44(1223)336033, e-mail: deposit@ccdc.cam.ac.uk] and are available on request quoting the deposition numbers CCDC 843315 for 13d and CCDC 843316 for 13f.