References
1a
Wessjohann LA.
Rivera DG.
Vercillo OE.
Chem. Rev.
2009,
109:
796
1b
Wessjohann LA.
Ruijter E.
Rivera DG.
Brandt W.
Mol.
Diversity
2005,
9:
171
1c
Wessjohann LA.
Curr. Opin. Chem. Biol.
2000,
4:
303
1d
Breinbauer R.
Vetter IR.
Waldmann H.
Angew. Chem.
Int. Ed.
2002,
41:
2878
1e
Driggers EM.
Hale
SP.
Lee J.
Terrett NK.
Nat.
Rev.
2008,
7:
608
2a
Newman DJ.
Cragg GM.
Snader KM.
J.
Nat. Prod.
2007,
70:
461
2b
Wessjohann LA.
Ruijter E.
Top. Curr. Chem.
2005,
243:
137
2c
Shu Y.-Z.
J.
Nat. Prod.
1998,
61:
1053
2d
Lehn J.-M.
Supramolecular Chemistry: Concepts and Perspectives
Wiley-VCH;
Weinheim:
1995.
2e
Vögtle F.
Supramolecular Chemistry
Wiley
and Sons;
Chichester:
1991.
For reviews on multicomponent reactions,
see:
3a
Bariwal JB.
Ermolat’ev DS.
Van der Eycken EV.
Chem.
Eur. J.
2010,
16:
3281
3b
Multicomponent
Reactions
Zhu JP.
Bienaymé H.
Wiley-VCH;
Weinheim:
2005.
3c
Ramón DJ.
Yus M.
Angew.
Chem. Int. Ed.
2005,
44:
1602
3d
Simon C.
Constantieux T.
Rodriguez J.
Eur.
J. Org. Chem.
2004,
4957
3e
Ugi I.
Dömling A.
Werner B.
J.
Heterocycl. Chem.
2000,
37:
647
3f
Weber L.
Illgen K.
Almstetter M.
Synlett
1999,
366
3g
Armstrong RW.
Combs AP.
Tempest PA.
Brown SD.
Keating TA.
Acc. Chem. Res.
1996,
29:
123
For selected examples of the Ugi-4CR,
see:
4a
Wessjohann LA.
Rivera DG.
León F.
Org. Lett.
2007,
9:
4733
4b
Michalik D.
Schaks A.
Wessjohann
LA.
Eur. J. Org. Chem.
2007,
149
4c
Westermann B.
Michalik D.
Schaks A.
Kreye O.
Wagner C.
Merzweiler K.
Wessjohann LA.
Heterocycles
2007,
73:
863
4d
Rivera DG.
Vercillo OE.
Wessjohann LA.
Synlett
2007,
308
4e
Wessjohann LA.
Rivera DG.
Coll F.
J. Org. Chem.
2006,
71:
7521
4f
Kreye O.
Westermann B.
Rivera DG.
Johnson DV.
Orru RVA.
Wessjohann LA.
QSAR
Comb. Sci.
2006,
25:
461
4g
Cristau P.
Temal-Laïb T.
Bois-Choussy M.
Martin M.-T.
Vors J.-P.
Zhu J.
Chem. Eur.
J.
2005,
11:
2668
4h
Beck B.
Picard A.
Herdtweck E.
Dömling A.
Org. Lett.
2004,
6:
39
4i
Schreiber SL.
Chem. Eng. News
2003,
81
(9):
51
4j
Janvier P.
Bois-Choussy M.
Bienaymé H.
Zhu J.
Angew. Chem. Int. Ed.
2003,
42:
811
4k
Temal-Laib T.
Chastanet J.
Zhu J.
J.
Am. Chem. Soc.
2002,
124:
583
For selected examples of Passerini-3CR,
see:
5a
León F.
Rivera DG.
Wessjohann LA.
J. Org. Chem.
2008,
73:
1762
5b
Wessjohann LA.
Kleber Z.
Andrade C.
Vercillo OE.
Rivera DG.
Targets Heterocycl. Syst.
2006,
10:
24
5c
Blankenstein J.
Zhu J.
Eur. J. Org. Chem.
2005,
1949
5d
Rowan SJ.
Hamilton DG.
Brandy PA.
Sanders JKM.
J.
Am. Chem. Soc.
1997,
119:
2578
5e
Cort AD.
Ercolani G.
Iamiceli AL.
Mandolini L.
Mencarelli P.
J. Am. Chem. Soc.
1994,
116:
7081
5f
Ercolani G.
Mandolini L.
Mencarelli P.
Roelens S.
J. Am. Chem. Soc.
1993,
115:
3901
For selected examples of the Staudinger-3CR,
see:
6a
Sierra MA.
Pellico D.
Gómez-Gallego M.
Manchego MJ.
Torres R.
J. Org. Chem.
2006,
71:
8787
6b
Arumugan N.
Raghunathan R.
Tetrahedron Lett.
2006,
47:
8855
6c
Palomo C.
Aizpurua JM.
Ganboa I.
Oiarbide M.
Eur. J. Org. Chem.
1999,
3223
7 For selected examples of the Petasis
reaction, see: Petasis
NA. In
Multicomponent Reactions
Zhu J.
Bienyamé H.
Wiley-VCH;
Weinheim:
2005.
p.119
For selected examples of the Mannich
reaction, see:
8a
Mani G.
Jana D.
Kumar R.
Ghorai D.
Org. Lett.
2010,
12:
3212
8b
Mani G.
Guchhait T.
Kumar R.
Kumar S.
Org. Lett.
2010,
12:
3910
8c
Beyeh NK.
Valkonen A.
Rissanen K.
Org. Lett.
2010,
12:
1392
8d
Rivera A.
Quevedo R.
Tetrahedron Lett.
2004,
45:
8335
8e
Airola K.
Böhmer V.
Paulus EF.
Rissanen K.
Schmidt C.
Thondorf I.
Vogt W.
Tetrahedron
1997,
53:
10709
8f
Iwanek W.
Mattay J.
Liebigs Ann.
1995,
1463
9a
Miura M.
Enna M.
Okuro K.
Nomura M.
J. Org. Chem.
1995,
60:
4999
9b
Jenmalm A.
Berts W.
Li YL.
Luthman K.
Csoregh I.
Hacksell U.
J. Org. Chem.
1994,
59:
1139
10a
Dyker G.
Angew. Chem. Int. Ed.
1999,
38:
1698
10b
Naota T.
Takaya H.
Murahashi SI.
Chem.
Rev.
1998,
98:
2599
10c
Huffman MA.
Yasuda N.
DeCamp AE.
Grabowski EJJ.
J.
Org. Chem.
1995,
60:
1590
10d
Konishi M.
Ohkuma H.
Tsuno T.
Oki T.
VanDuyne GD.
Clardy J.
J. Am. Chem. Soc.
1990,
112:
3715
11a
Zhang Y.
Li P.
Wang M.
Wang L.
J. Org. Chem.
2009,
74:
4364
11b
Li P.
Zhang Y.
Wang L.
Chem.
Eur. J.
2009,
15:
2045
11c
Kumar V.
Chipeleme A.
Chibale K.
Eur.
J. Org. Chem.
2008,
43
11d
Lo VK.-Y.
Liu Y.
Wong M.-K.
Che C.-M.
Org. Lett.
2006,
8:
1529
11e
Li P.
Wang L.
Chin. J. Chem.
2005,
23:
1076
11f
Shi L.
Tu YQ.
Wang M.
Zhang FM.
Fan CA.
Org.
Lett.
2004,
6:
1001
11g
Sakaguchi S.
Mizuta T.
Furuwan M.
Kubo T.
Ishii Y.
Chem.
Commun.
2004,
1638
11h
Bieber LW.
Silva MF.
Tetrahedron
Lett.
2004,
45:
8281
11i
Jiang B.
Si Y.-G.
Tetrahedron Lett.
2003,
44:
6767
11j
Wei C.
Li Z.
Li C.-J.
Org.
Lett.
2003,
5:
4473
11k
Wei C.
Li C.-J.
J. Am. Chem. Soc.
2003,
125:
9584
11l
Huma HZS.
Halder R.
Kalra SS.
Dasb J.
Iqbala J.
Tetrahedron Lett.
2002,
43:
6485
11m
Li C.-J.
Wei C.
Chem. Commun.
2002,
268
11n
Sharba AH.
Ahbath Al-Yarmouk,
Basic Sci. Eng.
2002,
11
(2A):
655
11o
Kabalka GW.
Wang L.
Pagni RM.
Synlett
2001,
676
11p
Fischer C.
Carreira EM.
Org. Lett.
2001,
3:
4319
11q
Sakaguchi S.
Kubo T.
Ishii Y.
Angew.
Chem. Int. Ed.
2001,
40:
2534
12
Crystal Structure
Data for Compound L1
CCDC 815275, C18H20N2O2; MW = 296.36;
monoclinic; space group: P2 (1)/c, a = 10.715
(3), b = 5.4373
(13), c = 26.758
(6) Å, α = 90.00˚, β = 92.176
(4)˚, γ = 90.00˚; V = 1557.8
(6) ų; T = 150
(2) K; Z = 4; D
C = 1.264
Mg/m³; µ = 0.083
mm-¹; λ = 0.71073 Å; F(000) = 632; crystal size: 0.16 × 0.10 × 0.10
mm³; 3376 independent reflections [R(int) = 0.0940],
reflections collected 10246; refinement method: full-matrix least-squares
on F²: goodness-of-fit on F² 1.093;
final R indices [I > 2σ(I)], R1 = 0.0752, wR2 = 0.1847,
largest diff. peak and hole 0.390 Å-³and
-0.242
e Å-³.
13
Crystal Structure
Data for Compound L2
CCDC 848122, C36H38Cl2N4O4; MW = 661.60;
triclinic; space group: P1, a = 7.6628
(19), b = 10.062
(3), c = 11.528 (3) Å, α = 91.301
(4)˚, β = 93.047
(4)˚, γ = 112.314
(4)˚; V = 820.2
(4) ų, T = 298
(2) K, Z = 1, D
C = 1.339
Mg/m³, µ = 0.244
mm-¹, λ = 0.71073 Å, F(000) = 348; crystal size: 0.16 × 0.12 × 0.10
mm³; 2844 independent reflections [R(int) = 0.0183],
reflections collected 4852; refinement method: full-matrix least-squares
on F²: goodness-of-fit on F² 1.069;
final R indices [I > 2σ(I)], R1 = 0.0706, wR2 = 0.1746,
largest diff. peak and hole 0.273 Å-³and -0.278
e Å-³.
14
Crystal Structure
Data for Compound S3
CCDC 832859, C27H30N2O2, MW = 414.53;
monoclinic; space group: C2/c, a = 13.946
(2) Å, b = 18.635
(3) Å, c = 9.1650
(14) Å, α = 90.00˚, β = 107.492
(2)˚, γ = 90.00˚, V = 2271.6
(6) ų, T = 298
(2) K, Z = 4, D
C = 1.212
Mg/m³, µ = 0.076
mm-¹, λ = 0.71073 Å, F(000) = 888; crystal size 0.16 × 0.12 × 0.10
mm³; 2471 independent reflections [R(int) = 0.0227],
reflections collected 7122; refinement method: full-matrix least-squares
on F²: goodness-of-fit on F² 1.137;
final R indices [I > 2σ(I)], R1 = 0.0727, wR2 = 0.1597,
largest diff. peak and hole 0.227 Å-³and
-0.151
e Å-³.
15
Crystal Structure
Data for Compound S4
CCDC 815277, C24H24N2O2S, MW = 404.51;
triclinic; space group: P1, a = 9.2569
(12), b = 10.8855
(14), c = 11.5162 (14) Å, α = 114.300(2)˚, β = 90.206
(2)˚, γ = 90.845
(2)˚, V = 1057.5
(2) ų, T = 298
(2) K, Z = 2, D
C = 1.270
Mg/m³, µ = 0.175
mm-¹, λ = 0.71073Å, F(000) = 428; crystal size 0.16 × 0.12 × 0.10
mm³; 4075 independent reflections [R(int) = 0.0215],
reflections collected 6108; refinement method: full-matrix least-squares
on F²: goodness-of-fit on F² 1.062;
final R indices [I > 2σ(I)], R1 = 0.0581, wR2 = 0.1311,
largest diff. peak and hole 0.185 Å-³and
-0.186
e Å-³.
16 Compounds S8 and L8 were obtained as a mixture, for more details,
see Supporting Information.
17
Crystal Structure
Data for Compound S5
CCDC, 8152756, C18H20N2O2, MW = 296.36;
monoclinic; space group Cc, a = 17.6508
(17), b = 10.4452
(10), c = 18.9547
(18) Å, α = 90.00˚, β = 117.458
(2)˚, γ = 90.00˚, V = 3100.9
(5)ų, T = 298
(2) K, Z = 8, D
C = 1.270
Mg/m³, µ = 0.084
mm-¹, λ = 0.71073 Å, F(000) = 1264: crystal size 0.16 × 0.12 × 0.10
mm³; 4566 independent reflections [R(int) = 0.0467],
reflections collected 9790, refinement method: full-matrix least-squares
on F²: goodness-of-fit on F² 1.014;
final R indices [I > 2σ(I)], R1 = 0.0704, wR2 = 0.1641,
largest diff. peak and hole 0.389 Å-³ and
-0.233
e Å-³.
18a
Crowley JD.
Goldup SM.
Gowans ND.
Leigh
DA.
Ronaldson VE.
Slawin AMZ.
J. Am. Chem.
Soc.
2010,
132:
6243
18b
Do H.-Q.
Daugulis O.
J. Am. Chem. Soc.
2009,
131:
17052
18c
Glaser C.
Ber.
Dtsch. Chem. Ges.
1869,
2:
422