Synlett 2012(3): 443-447  
DOI: 10.1055/s-0031-1290136
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Facile Synthesis of 5-Halopyrimidine-4-Carboxylic Acid Esters via a Minisci Reaction

Collin F. Regan*a, Fabrice Pierrea, Michael K. Schwaebea, Mustapha Haddacha, Michael E. Jungb, David M. Ryckmana
a Cylene Pharmaceuticals, 5820 Nancy Ridge Drive, Suite 200, San Diego, CA 92121, USA
Fax: +1(858)8755101; e-Mail: cfregan2002@yahoo.com;
b Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East,Los Angeles, CA 90095-1569, USA
Further Information

Publication History

Received 28 October 2011
Publication Date:
19 January 2012 (online)

Abstract

This paper reports the synthesis of various 5-halopyrimidine-4-carboxylic acid esters via the Minisci homolytic alkoxycarbonylation of 5-halopyrimidines. The reaction was found to be highly regioselective, allowing the one-step synthesis of useful amounts (>10 g) of ethyl 5-bromopyrimidine-4-carboxylate where other methods proved difficult. Ethyl 5-bromopyrimidine-4-carboxylate was used for the preparation of potent CK2 inhibitors including CX-5011. This work represents an interesting application of radical chemistry for the preparation of pharmacologically active molecules.

    References and Notes

  • 1 Capdeville RBE. Zimmerman J. Matter A. Nat. Rev. Drug Discovery  2002,  493 
  • 2 Das KCAD. Lewi PJ. Heeres J. de Jonge MR. Koymans LMH. Vinkers HM. Daeyaert F. Ludovici DW. Kukla MJ. De Corte B. Kavash RW. Ho CY. Ye H. Lichtenstein MA. Andries K. Pauwels R. de Bethune M.-P. Boyer PL. Clark P. Hughes SH. Janssen PAJ. Arnold E. J. Med. Chem.  2004,  2550 
  • 3 Stenbuck P, and Hood HM. inventors; US  3049544. 
  • 4 Lednicer D. The Organic Chemistry of Drug Synthesis   Vol. 7:  Wiley-Interscience; Hoboken: 2008.  p.7 
  • 5 Pierre F. O’Brien SE. Haddach M. Bourbon P. Schwaebe MK. Stefan E. Darjania L. Stansfield R. Ho C. Siddiqui-Jain A. Streiner N. Rice WG. Anderes K. Ryckman DM. Bioorg. Med. Chem. Lett.  2011,  21:  1687 
  • 6 Battistutta R. Cozza G. Pierre F. Papinutto E. Lolli G. Sarno S. O’Brien SE. Siddiqui-Jain A. Haddach M. Anderes K. Ryckman DM. Meggio F. Pinna LA. Biochemistry  2011,  50:  8478 
  • 7 Pierre F. Chua PC. O’Brien SE. Siddiqui-Jain A. Bourbon P. Haddach M. Michaux J. Nagasawa J. Schwaebe MK. Stefan E. Vialettes A. Whitten JP. Chen TK. Darjania L. Stansfield R. Anderes K. Bliesath J. Drygin D. Ho C. Omori M. Proffitt C. Streiner N. Trent K. Rice WG. Ryckman DM. J. Med. Chem.  2011,  54:  635 
  • 8 Barreau M, Cotrel C, and Jeanmart C. inventors; US  4110450. 
  • 9 Krasovskiy A. Krasovskaya V. Knochel P. Angew. Chem. Int. Ed.  2006,  45:  2958 
  • 10 Kress TJ. J. Org. Chem.  1979,  44:  2081 
  • 11 Jones CD. Winter MA. Hirsch KS. Stamm N. Taylor HM. Holden HE. Davenport JD. Krumkalns EV. Suhr RG. J. Med. Chem.  1990,  33:  416 
  • 12 Bernardi RCT. Galli R. Minisci F. Perchinunno M. Tetrahedron Lett.  1973,  9:  645 
  • 13 Minisci F. Fontana F. Vismara E. J. Heterocycl. Chem.  1990,  27:  79 
  • 14 Minisci F. Synthesis  1973,  1 
  • 15 Minisci F. Vismara E. Fontana F. Heterocycles  1989,  28:  489 
  • 16 Heinisch G. Lotsch G. Angew. Chem., Int. Ed. Engl.  1985,  24:  692 
  • 17 Yurovskaya MA. Mitkin OD. Chem. Heterocycl. Compd.  1997,  33:  1299 
  • 18 Haider N. Kaferbock J. Heterocycles  2000,  53:  2527 
  • 19 Coppa F. Fontana F. Lazzarini E. Minisci F. Pianese G. Zhao L. Tetrahedron Lett.  1992,  33:  3057 
  • 20 Sakamoto T. Sakasai T. Yamanaka H. Chem. Pharm. Bull.  1980,  28:  571 
  • 21 Phillips OA. Murthy KSK. Fiakpui CY. Knaus EE. Can. J. Chem.  1999,  77:  216 
  • 22 Haider N. Molbank  2002,  M287 
  • 23 Sakamoto T. Ono T. Sakasai T. Yamanaka H. Chem. Pharm. Bull.  1980,  28:  202 
  • 25 Gardini GP. Minisci F. J. Chem. Soc.  1970,  929 
  • 26 Caronna TGG. Minisci F. Chem. Commun.  1969,  201 
24

Methyl pyruvate typically gave conversions and isolated yields that were inferior (ca. 10-20% lower) to ethyl pyruvate on a variety of tested substrates. This had no practical consequences on the preparation of the target molecule CX-5011, where no significant differences were observed when using the methyl or the ethyl ester as a starting material.

27

Typical Procedure for the Synthesis of Ethyl 5-bromo-pyrimidine-4-carboxylate
In a 250 mL round-bottom flask, ethyl pyruvate (4.5 equiv, 50 mL, 450 mmol) was cooled to -10 ˚C. AcOH (70 mL) was added while maintaining the internal temperature below -5 ˚C. A 30% aq H2O2 solution (3 equiv, 34 g, 300 mmol) was added dropwise while maintaining the internal temperature below -2 ˚C. In a separate two-neck 2 L round-bottom flask fitted with a mechanical stirrer was charged 5-bromopyrimidine (1.0 equiv, 15.90 g, 100 mmol), toluene (300 mL), and H2O (70 mL). This solution was cooled to
-10 ˚C, and concentrated H2SO4 (3 equiv, 16 mL, 300 mmol) was added followed by FeSO4˙7H2O (3.05 equiv, 84.79 g, 305 mmol). To this reaction mixture under vigorous stirring was added the peroxide solution over 1 h, while keeping the internal temperature below 0 ˚C. Once the addition was complete, the reaction mixture was stirred for 30 min and then decanted onto ice water (200 mL). The pH was adjusted to 7 by the addition of 1 N NaOH, and the solution was filtered over a pad of Celite and washed with CH2Cl2 (1 L). The aqueous layer was extracted with CH2Cl2 (2 × 800 mL). The organics were washed with 5% NaHSO3 (2 × 500 mL), brine (1.5 L), and then dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified via flash column chromatography (10% EtOAc-hexanes) to give a slightly yellow oil (12.49 g, 54%, >90% pure). Vacuum distillation (bp, 75-76 ˚C, ca. 1 mm Hg) provided analytically pure ethyl 5-bromopyrimidine-4-carboxylate as a clear, colorless oil (11.18 g, 48%). ¹H NMR (400 MHz, CDCl3): δ = 9.20 (s, 1 H), 9.00 (s, 1 H), 4.51 (q, J = 7.2 Hz, 2 H), 1.46 (t, J = 7.2 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 163.2, 161.0, 156.5, 155.8, 117.7, 62.9, 14.0 ppm. LC-MS (ES): >95% pure, m/z 185 [M - OEt]+. GC-MS (EI): >99% pure, m/z = 230. The structure of the material was confirmed by its successful use in the next chemical step on route to CX-5011. All other examples described in this paper were prepared with a similar procedure, typically
on a 2-mmol scale. In cases involving poorly soluble pyrimidines, H2SO4 was added without external cooling, with the resulting exotherm dissolving the organic substrate. The solution was then cooled to -10 ˚C prior to carrying on the rest of the reaction. Compounds were purified by flash chromatography on silica gel (eluting with 10% EtOAc in hexanes or 2.5% MeOH in CH2Cl2) and found to be 95% pure by GC-MS. All compounds isolated were characterized by ¹H NMR, ¹³C NMR, and GC-MS.