Subscribe to RSS
DOI: 10.1055/s-0031-1290310
Reductive Ring Cleavage of Nonconjugated Δ²-Isoxazolines to β-Hydroxy Ketones with Aluminum and Copper(II) Chloride
Publication History
Publication Date:
19 January 2012 (online)
Abstract
A facile, economic, and efficient protocol for the reduction of nonconjugated Δ²-isoxazolines to the corresponding β-hydroxy ketones using Al/CuCl2 as the reducing agent has been developed. The method is both rapid and complete requiring less than ten minutes to attain total ring cleavage. This is the first example of using an in situ prepared Al/Cu couple in organic synthesis.
Key words
reduction - isoxazolines - β-hydroxyketones - aluminum/copper couple
-
1a
1,3-Dipolar
Cycloaddition Chemistry
Vol. 1 and 2:
Padwa A. Wiley; New York: 1984. -
1b
Torssell KBG. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis VCH; Weinheim: 1988. -
1c
Werner A.Buss H. Ber. Dtsch. Chem. Ges. 1894, 27: 2193 -
1d
Minakata S.Okumura S.Nagamachi T.Takeda Y. Org. Lett. 2011, 13: 2966 -
1e
Kim JN.Chung KH.Ryu EK. Heterocycles 1991, 32: 477 -
2a
Wityak J.Sielecki TM.Pinto DJ.Emmett G.Sze JY.Liu J.Tobin AE.Wang S.Jiang B.Ma P.Mousa SA.Olson RE.Wexler RR. J. Med. Chem. 1997, 40: 50 -
2b
Groutas WC.Venkataraman R.Chong LS.Yoder JE.Epp JB.Stanga MA.Kim EH. Bioorg. Med. Chem. 1995, 3: 125 - 3
Curran DP. J. Am. Chem. Soc. 1982, 104: 4024 -
4a
McGarvey GJ.Mathys JA.Wilson KJ. J. Org. Chem. 1996, 61: 5704 -
4b
Bartoli G.Bosco M.Marcantoni E.Massaccesi M.Rinaldi S.Sambri L. Eur. J. Org. Chem. 2001, 4679 -
4c
Sinha SC.Barbas CF.Lerner RA. Proc. Natl. Acad. Sci. U.S.A. 1998, 95: 14603 -
4d
Paterson I.Florence GJ.Gerlach K.Scott JP.Sereinig N. J. Am. Chem. Soc. 2001, 123: 9535 -
4e
Colle S.Taillefumier C.Chapleur Y.Liebl R.Schmidt A. Bioorg. Med. Chem. 1999, 7: 1049 -
4f
Muri D.Lohse-Fraefel N.Carreira EM. Angew. Chem. Int. Ed. 2005, 44: 4036 -
5a
Poutiainen PK.Venäläinen TA.Peräkylä M.Matilainen JM.Väisänen S.Honkakoski P.Laatikainen R.Pulkkinen JT. Bioorg. Med. Chem. 2010, 18: 3437 -
5b
León LG.Carballo RM.Vega-Hernández MC.Miranda PO.Martín VS.Padrón JI.Padrón JM. ChemMedChem 2008, 3: 1740 -
5c
Pulkkinen JT.Honkakoski P.Perakyla M.Berczi I.Laatikainen R.
J. Med. Chem. 2008, 51: 3562 -
6a
Romanski J.Nowak P.Jurczak J.Chapuis C. Tetrahedron: Asymmetry 2011, 22: 787 -
6b
Curran DP.Scanga SA.Fenk CJ. J. Org. Chem. 1984, 49: 3474 -
6c
Casnati G.Quilico A.Ricca A.Finzi PV. Tetrahedron Lett. 1966, 233 -
6d
Bull JA.Balskus EP.Horan AJ.Langner M.Ley SV. Chem. Eur. J. 2007, 13: 5515 -
7a
Nitta M.Kobayashi T. J. Chem. Soc., Chem. Commun. 1982, 877 -
7b
Baraldi PG.Barco A.Benetti S.Manfredini S.Simoni D. Synthesis 1987, 276 -
7c
Paek S.-M.Yun H.Kim N.-J.Jung J.-W.Chang D.-J.Lee S.Yoo J.Park H.-J.Suh Y.-G. J. Org. Chem. 2009, 74: 554 -
8a
Natale NR. Tetrahedron Lett. 1982, 23: 5009 -
8b
Bode JW.Carreira EM. Org. Lett. 2001, 3: 1587 -
8c
Bode JW.Carreira EM. J. Am. Chem. Soc. 2001, 123: 3611 - 9
Jiang D.Chen Y. J. Org. Chem. 2008, 73: 9181 - 10
Curran DP. J. Am. Chem. Soc. 1983, 105: 5826 - 11
Churykau H.Zinovich VG.Kulinkovich OG. Synlett 2004, 1949 -
12a
Baraldi PG.Barco A.Benetti S.Pollini GP.Simoni D. Synthesis 1987, 857 -
12b
Kozikowski AP. Acc. Chem. Res. 1984, 17: 410 -
12c
Ignatovich ZhV.Chernikhova TV.Skupskaya RV.Bondar NF.Koroleva EV.Lakhvich FA. Chem. Heterocycl. Compd. 1999, 248 -
13a
Li CJ.Chan T.-H. Organic Reactions in Aqueous Media Wiley; New York: 1997. -
13b
Grieco PA. Organic Synthesis in Water Kluwer Academic; Dordrecht: 1997. -
14a
Heinrichs B.Delhez P.Schoebrechts J.Pirard J. J. Catal. 1997, 172: 322 -
14b
Lambert S.Heinrichs B.Brasseur A.Rulmont A.Pirard JP. Appl. Catal. A 2004, 270: 201 -
14c
Ghauch A.Tuqan A. Chemosphere 2008, 73: 751 -
14d
Lien HL.Zhang WX. J. Environ. Eng. (Reston, VA,U.S.) 2002, 131: 4 -
14e
Lien HL.Zhang WX. Chemosphere 2002, 49: 371 ; and references cited therein
References and Notes
Typical Procedure
for the Reductive Cleavage of 3,5-Disubstituted 4,5-Dihydroisoxazoles
1
To the mixture of the corresponding 3,5-disubstituted
4,5-dihydroisoxazole (1, 1 mmol) and Al
dust (0.81 g, 30 mmol) in MeOH (5 mL) a solution of CuCl2×2H2O
(1.75 g, 10 mmol) in H2O (5 mL) was added dropwise under
vigorous stirring. After the evolution of hydrogen and full consumption
of the starting material (observed by TLC, approximately after 5-10
min), the mixture was diluted with H2O (30 mL), and the
product was extracted with CHCl3 (2 ×30 mL).
The organic layer was dried over Na2SO4, evaporated
under the reduced pressure, and the residue purified by column chromatography
to give 2.
Analytical
Data for 5-Hydroxy-7-tridecanone (2a)
Yield: 84%;
colorless oil. IR (KBr): νmax = 3410
(OH), 1706 (C=O) cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 0.88
(3 H, t, J = 7.5
Hz, CH3), 0.91 (3 H, t, J = 7.5
Hz, CH3), 1.28-1.60 (14 H, m, 7 CH2),
2.43 [2 H, t, J = 7.5
Hz, C(8)H2], 2.48-2.54 [1
H, m, C(6)H], 2.57-2.64 [1 H, m, C(6)H],
3.03 (1 H, br s, OH), 3.99-4.07 [1 H, m, C(5)H] ppm. ¹³C
NMR (75 Hz, CDCl3): δ = 13.8
(CH3), 13.9 (CH3), 22.4, 22.6, 23.5, 27.6, 28.7,
31.5, 36.1 (C-4), 43.6 (C-8), 48.9 (C-6), 67.5 (C-5), 212.6 (C-7)
ppm. Anal. Calcd for C13H26O2:
C, 72.84; H, 12.23. Found: C, 73.00; H, 12.19.
Compounds 1-4 were
also fully characterized by IR, ¹H NMR, ¹³C
NMR spectroscopic and microanalytical data, and data for known compounds
are in agreement with published data.