Synlett 2012(3): 381-384  
DOI: 10.1055/s-0031-1290310
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Reductive Ring Cleavage of Nonconjugated Δ²-Isoxazolines to β-Hydroxy Ketones with Aluminum and Copper(II) Chloride

Ieva Karpaviciene, Ringaile Lapinskaite, Algirdas Brukstus, Inga Cikotiene*
Department of Organic Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
Fax: +370(5)2330987; e-Mail: inga.cikotiene@chf.vu.lt;
Further Information

Publication History

Received 6 October 2011
Publication Date:
19 January 2012 (online)

Abstract

A facile, economic, and efficient protocol for the reduction of nonconjugated Δ²-isoxazolines to the corresponding β-hydroxy ketones using Al/CuCl2 as the reducing agent has been developed. The method is both rapid and complete requiring less than ten minutes to attain total ring cleavage. This is the first example of using an in situ prepared Al/Cu couple in organic synthesis.

    References and Notes

  • 1a 1,3-Dipolar Cycloaddition Chemistry   Vol. 1 and 2:  Padwa A. Wiley; New York: 1984. 
  • 1b Torssell KBG. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis   VCH; Weinheim: 1988. 
  • 1c Werner A. Buss H. Ber. Dtsch. Chem. Ges.  1894,  27:  2193 
  • 1d Minakata S. Okumura S. Nagamachi T. Takeda Y. Org. Lett.  2011,  13:  2966 
  • 1e Kim JN. Chung KH. Ryu EK. Heterocycles  1991,  32:  477 
  • 2a Wityak J. Sielecki TM. Pinto DJ. Emmett G. Sze JY. Liu J. Tobin AE. Wang S. Jiang B. Ma P. Mousa SA. Olson RE. Wexler RR. J. Med. Chem.  1997,  40:  50 
  • 2b Groutas WC. Venkataraman R. Chong LS. Yoder JE. Epp JB. Stanga MA. Kim EH. Bioorg. Med. Chem.  1995,  3:  125 
  • 3 Curran DP. J. Am. Chem. Soc.  1982,  104:  4024 
  • 4a McGarvey GJ. Mathys JA. Wilson KJ. J. Org. Chem.  1996,  61:  5704 
  • 4b Bartoli G. Bosco M. Marcantoni E. Massaccesi M. Rinaldi S. Sambri L. Eur. J. Org. Chem.  2001,  4679 
  • 4c Sinha SC. Barbas CF. Lerner RA. Proc. Natl. Acad. Sci. U.S.A.  1998,  95:  14603 
  • 4d Paterson I. Florence GJ. Gerlach K. Scott JP. Sereinig N. J. Am. Chem. Soc.  2001,  123:  9535 
  • 4e Colle S. Taillefumier C. Chapleur Y. Liebl R. Schmidt A. Bioorg. Med. Chem.  1999,  7:  1049 
  • 4f Muri D. Lohse-Fraefel N. Carreira EM. Angew. Chem. Int. Ed.  2005,  44:  4036 
  • 5a Poutiainen PK. Venäläinen TA. Peräkylä M. Matilainen JM. Väisänen S. Honkakoski P. Laatikainen R. Pulkkinen JT. Bioorg. Med. Chem.  2010,  18:  3437 
  • 5b León LG. Carballo RM. Vega-Hernández MC. Miranda PO. Martín VS. Padrón JI. Padrón JM. ChemMedChem  2008,  3:  1740 
  • 5c Pulkkinen JT. Honkakoski P. Perakyla M. Berczi I. Laatikainen R.
    J. Med. Chem.  2008,  51:  3562 
  • 6a Romanski J. Nowak P. Jurczak J. Chapuis C. Tetrahedron: Asymmetry  2011,  22:  787 
  • 6b Curran DP. Scanga SA. Fenk CJ. J. Org. Chem.  1984,  49:  3474 
  • 6c Casnati G. Quilico A. Ricca A. Finzi PV. Tetrahedron Lett.  1966,  233 
  • 6d Bull JA. Balskus EP. Horan AJ. Langner M. Ley SV. Chem. Eur. J.  2007,  13:  5515 
  • 7a Nitta M. Kobayashi T. J. Chem. Soc., Chem. Commun.  1982,  877 
  • 7b Baraldi PG. Barco A. Benetti S. Manfredini S. Simoni D. Synthesis  1987,  276 
  • 7c Paek S.-M. Yun H. Kim N.-J. Jung J.-W. Chang D.-J. Lee S. Yoo J. Park H.-J. Suh Y.-G. J. Org. Chem.  2009,  74:  554 
  • 8a Natale NR. Tetrahedron Lett.  1982,  23:  5009 
  • 8b Bode JW. Carreira EM. Org. Lett.  2001,  3:  1587 
  • 8c Bode JW. Carreira EM. J. Am. Chem. Soc.  2001,  123:  3611 
  • 9 Jiang D. Chen Y. J. Org. Chem.  2008,  73:  9181 
  • 10 Curran DP. J. Am. Chem. Soc.  1983,  105:  5826 
  • 11 Churykau H. Zinovich VG. Kulinkovich OG. Synlett  2004,  1949 
  • 12a Baraldi PG. Barco A. Benetti S. Pollini GP. Simoni D. Synthesis  1987,  857 
  • 12b Kozikowski AP. Acc. Chem. Res.  1984,  17:  410 
  • 12c Ignatovich ZhV. Chernikhova TV. Skupskaya RV. Bondar NF. Koroleva EV. Lakhvich FA. Chem. Heterocycl. Compd.  1999,  248 
  • 13a Li CJ. Chan T.-H. Organic Reactions in Aqueous Media   Wiley; New York: 1997. 
  • 13b Grieco PA. Organic Synthesis in Water   Kluwer Academic; Dordrecht: 1997. 
  • 14a Heinrichs B. Delhez P. Schoebrechts J. Pirard J. J. Catal.  1997,  172:  322 
  • 14b Lambert S. Heinrichs B. Brasseur A. Rulmont A. Pirard JP. Appl. Catal. A  2004,  270:  201 
  • 14c Ghauch A. Tuqan A. Chemosphere  2008,  73:  751 
  • 14d Lien HL. Zhang WX. J. Environ. Eng. (Reston, VA,U.S.)  2002,  131:  4 
  • 14e Lien HL. Zhang WX. Chemosphere  2002,  49:  371 ; and references cited therein
15

Typical Procedure for the Reductive Cleavage of 3,5-Disubstituted 4,5-Dihydroisoxazoles 1 To the mixture of the corresponding 3,5-disubstituted 4,5-dihydroisoxazole (1, 1 mmol) and Al dust (0.81 g, 30 mmol) in MeOH (5 mL) a solution of CuCl2×2H2O (1.75 g, 10 mmol) in H2O (5 mL) was added dropwise under vigorous stirring. After the evolution of hydrogen and full consumption of the starting material (observed by TLC, approximately after 5-10 min), the mixture was diluted with H2O (30 mL), and the product was extracted with CHCl3 (2 ×30 mL). The organic layer was dried over Na2SO4, evaporated under the reduced pressure, and the residue purified by column chromatography to give 2.
Analytical Data for 5-Hydroxy-7-tridecanone (2a)
Yield: 84%; colorless oil. IR (KBr): νmax = 3410 (OH), 1706 (C=O) cm. ¹H NMR (300 MHz, CDCl3): δ = 0.88 (3 H, t, J = 7.5 Hz, CH3), 0.91 (3 H, t, J = 7.5 Hz, CH3), 1.28-1.60 (14 H, m, 7 CH2), 2.43 [2 H, t, J = 7.5 Hz, C(8)H2], 2.48-2.54 [1 H, m, C(6)H], 2.57-2.64 [1 H, m, C(6)H], 3.03 (1 H, br s, OH), 3.99-4.07 [1 H, m, C(5)H] ppm. ¹³C NMR (75 Hz, CDCl3): δ = 13.8 (CH3), 13.9 (CH3), 22.4, 22.6, 23.5, 27.6, 28.7, 31.5, 36.1 (C-4), 43.6 (C-8), 48.9 (C-6), 67.5 (C-5), 212.6 (C-7) ppm. Anal. Calcd for C13H26O2: C, 72.84; H, 12.23. Found: C, 73.00; H, 12.19.
Compounds 1-4 were also fully characterized by IR, ¹H NMR, ¹³C NMR spectroscopic and microanalytical data, and data for known compounds are in agreement with published data.