Synlett 2012; 23(11): 1696-1700
DOI: 10.1055/s-0031-1290406
letter
© Georg Thieme Verlag Stuttgart · New York

Hydrophobically Assisted Separation-Friendly Mitsunobu Reaction

Jian Guo
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, P. R. of China, Fax: +86(10)82802724   Email: xinshan@bjmu.edu.cn
,
Yu-Jiao Lu
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, P. R. of China, Fax: +86(10)82802724   Email: xinshan@bjmu.edu.cn
,
Li Zhang
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, P. R. of China, Fax: +86(10)82802724   Email: xinshan@bjmu.edu.cn
,
Xin-Shan Ye*
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, P. R. of China, Fax: +86(10)82802724   Email: xinshan@bjmu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 09 April 2012

Accepted after revision: 06 May 2012

Publication Date:
14 June 2012 (online)


Abstract

A separation-friendly Mitsunobu reaction using hydrophobic-tagged acids is reported. Commercially available or simply prepared and recyclable hydrophobic-tagged acids can react with various alcohols to afford the target products in high yield with easy purification based on C-18 silica solid-phase extraction or normal silica gel filtration.

Supporting Information

 
  • References and Notes

    • 2a Dandapani S, Curran DP. Chem.–Eur. J. 2004; 10: 3130
    • 2b Dembinski R. Eur. J. Org. Chem. 2004; 2763
  • 8 Dodge JA, Trujillo JI, Presnell M. J. Org. Chem. 1994; 59: 234
  • 9 Kondoh A, Yorimitsu H, Oshima K. Tetrahedron 2006; 62: 2357
  • 10 Mitsunobu Reaction and Purification by Silica Gel Filtration; Typical Procedure (8g): To a solution of acid 7 (77.0 mg, 0.17 mmol), alcohol g (21.0 mg, 0.13 mmol), and Ph3P (67.0 mg, 0.26 mmol) in THF (6 mL) under argon, was added DEAD (47.0 mg, 0.27 mmol) dropwise. The mixture was stirred at 0 °C for 1 h and for 2 h at r.t. Silica gel (1.00 g) was then added to the reaction vessel and the solvents were removed. The silica gel with the adsorbed reaction mixture on it was transferred to a column (2.5 cm diameter) that was previously filled to a height of 5 cm with silica gel, and washed with EtOAc–PE (1:8, v/v). The filtrates containing the product were collected and concentrated to give 8g as a white solid (67.0 mg, 88% yield); mp 56–57 °C. 1H NMR (400 MHz, CDCl3): δ = 8.22 (d, J = 8.4 Hz, 2 H), 7.99 (d, J = 8.4 Hz, 2 H), 5.50 (s, 1 H), 3.12–3.08 (m, 2 H), 2.11–2.07 (m, 1 H), 1.93–1.79 (m, 2 H), 1.77–1.65 (m, 3 H), 1.58–0.83 (m, 47 H). 13C NMR (100 MHz, CDCl3): δ = 164.29, 142.81, 135.64, 130.28, 128.20, 72.94, 56.23, 46.91, 39.09, 34.71, 31.90, 29.686, 29.62, 29.60, 29.52, 29.43, 29.40, 29.34, 29.22, 28.97, 28.26, 26.79, 25.37, 22.67, 22.59, 22.10, 20.94, 20.76, 14.10. HRMS: m/z [M + NH4]+ calcd for C35H64NO4S: 594.4556; found: 594.4553
  • 11 Alexander V, Choi WJ, Chun J, Kim HO, Jeon JH, Tosh DK, Lee HW, Chandra G, Choi J, Jeong LS. Org. Lett. 2010; 12: 2242
  • 12 Baumberger F, Vasella A, Schauer R. Helv. Chim. Acta 1988; 71: 429
  • 13 In SPE operation, double hydrophobic chain tagged products remained quantitatively adsorbed on the C-18 silica when rinsing the support with MeOH/water (95:5), even MeOH for the first 10 mL, whereas the other molecules without the tag were found to be completely rinsed out of the support, including the hydrophobic starting materials
  • 14 Mitsunobu Reaction and Purification by C-18 SPE; Typical Procedure (14h): To a solution of acid 13 (68.0 mg, 0.1 mmol), alcohol h (67.0 mg, 0.12 mmol), and Ph3P (53.0 mg, 0.2 mmol) in THF (6 mL) under argon, was added DEAD (37.0 mg, 0.21 mmol) dropwise at 0 °C. The mixture was stirred for 1 h at 0 °C and for 2 h at r.t. C-18 silica gel [500 mg, LiChroprep RP-18 (40–63 μm)] was added to the reaction vessel and the solvents were removed. The dry C-18 silica gel with the adsorbed reaction mixture on it was transferred to a column (1.8 cm diameter) that was previously filled to a height of 1 cm with C-18 silica gel. The C-18 silica gel was washed with MeOH–H2O (2:1, 30 mL), MeOH (2 × 20 mL), and acetone (30 mL) under reduced pressure. The filtrates containing the desorbed product were collected and concentrated to give 14h (114 mg, 94% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 8.18 (d, J = 8.2 Hz, 2 H), 7.93 (d, J = 8.2 Hz, 2 H), 7.60 (d, J = 6.2 Hz, 4 H), 7.49–7.18 (m, 16 H), 5.50 (dd, J = 9.4, 4.8 Hz, 1 H), 4.61 (t, J = 12.6 Hz, 1 H), 4.55 (d, J = 12.1 Hz, 1 H), 4.49 (d, J = 12.1 Hz, 1 H), 4.12 (td, J = 7.9, 4.2 Hz, 1 H), 3.78–3.73 (m, 4 H), 2.91 (br s, 1 H), 1.94–1.67 (m, 5 H), 1.58–1.53 (m, 3 H), 1.50–1.12 (m, 64 H), 1.00 (s, 9 H), 0.88 (t, J = 6.5 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 164.59, 142.23, 138.23, 137.85, 135.51, 134.72, 133.64, 133.54, 130.30, 129.65, 128.85, 128.38, 128.30, 127.77, 127.65, 127.59, 75.05, 74.43, 73.19, 73.12, 68.26, 64.68, 59.91, 33.54, 31.91, 29.68, 29.58, 29.51, 29.34, 29.27, 27.89, 26.84, 26.75, 22.67, 19.12, 14.08. MS (MALDI): m/z calcd for C77H116NaO7SSi: 1235.8; found: 1235.6. Anal. Calcd for C77H116O7SSi: C, 76.19; H, 9.63. Found: C, 76.09; H, 9.53