Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2012; 44(24): 3829-3835
DOI: 10.1055/s-0032-1316811
DOI: 10.1055/s-0032-1316811
paper
Versatile Synthesis of Dissymmetric Diarylideneacetones via a Palladium-Catalyzed Coupling–Isomerization Reaction
Further Information
Publication History
Received: 21 September 2012
Accepted after revision: 24 October 2012
Publication Date:
15 November 2012 (online)
Abstract
As a twofold Michael system, the diarylideneacetone core is of particular interest in organic synthesis and for therapeutic applications. To overcome the drawbacks of the classical Claisen–Schmidt protocol, a new methodology for the synthesis of dissymmetric (hetero)diarylideneacetones has been developed. Conditions were optimized with a Box–Behnken design of experiment. The milder reaction conditions allow the efficient preparation of fluorinated, or heteroaromatic, dissymmetric diarylideneacetones which cannot be obtained through the classical Claisen–Schmidt protocol.
Key words
heterocycles - catalysis - cross-coupling - isomerization - palladium - solvent effects - substituent effectsSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.
- Supporting Information
-
References
- 1 Fairlamb IJ. S, Kapdi AR, Lee AF. Org. Lett. 2004; 6: 4435
- 2 Qadir M, Möchel T, Hii K K. (M.). Tetrahedron 2000; 56: 7975
- 3 Kürti L, Czakó B. Strategic Applications of Named Reactions in Organic Synthesis: Background and Detailed Mechanisms. Elsevier; Amsterdam: 2005
- 4 Nair V, Mathew SC, Biju AT, Suresh E. Angew. Chem. Int. Ed. 2007; 46: 2070
- 5 Masuda T, Jitoe A, Isobe J, Nakatani N, Yonemori S. Phytochemistry 1993; 32: 1557
- 6a Wang Y, Xiao J, Zhou H, Yang S, Wu X, Jiang C, Zhao Y, Liang D, Li X, Liang G. J. Med. Chem. 2011; 54: 3768
- 6b Ohori H, Yamakoshi H, Tomizawa M, Shibuya M, Kakudo Y, Takahashi A, Takahashi S, Kato S, Suzuki T, Ishioka C, Iwabuchi Y, Shibata H. Mol. Cancer Ther. 2006; 5: 2563
- 6c Pati HN, Das U, Quail JW, Kawase M, Sakagami H, Dimmock JR. Eur. J. Med. Chem. 2008; 43: 1
- 7 Weber WM, Hunsaker LA, Abcouwer SF, Deck LM, Vander Jagt DL. Bioorg. Med. Chem. 2005; 13: 3811
- 8 Smerbeck RV, Pittz EP. US Patent 4,587,260, 1986
- 9 Cui M, Ono M, Kimura H, Liu B, Saji H. J. Med. Chem. 2011; 54: 2225
- 10 Conard CR, Dolliver MA. Org. Synth. 1932; 12: 22
- 11 Marvel CS, Stille JK. J. Org. Chem. 1957; 22: 1451
- 12 Sehnal P, Taghzouti H, Fairlamb IJ. S, Jutand A, Lee AF, Whitwood AC. Organometallics 2009; 28: 824
- 13 Yuan K, Song B, Jin L, Xu S, Hu D, Xu X, Yang S. MedChemComm 2011; 2: 585
- 14 Qiu X, Du Y, Lou B, Zuo Y, Shao W, Huo Y, Huang J, Yu Y, Zhou B, Du J, Fu H, Bu X. J. Med. Chem. 2010; 53: 8260
- 15a Müller TJ. J. Synthesis 2012; 44: 159
- 15b Braun RU, Ansorge M, Müller TJ. J. Chem.–Eur. J. 2006; 12: 9081
- 15c Müller TJ. J, Ansorge M, Aktah D. Angew. Chem. Int. Ed. 2000; 39: 1253
- 16 Schramm (née Dediu), O.; Müller TJ. J. Adv. Synth. Catal. 2006; 348: 2565
- 17 Kappe CO. Angew. Chem. Int. Ed. 2004; 43: 6250
- 18 Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
- 19 Box GE. P, Behnken DW. Technometrics 1960; 2: 455
- 20 Ferreira SL. C, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EG. P, Portugal LA, dos Reis PS, Souza AS, dos Santos WN. L. Anal. Chim. Acta 2007; 597: 179
- 21 A desiderability function was used for this purpose; for more information, see ref. 19 and also: Derringer G, Suich R. J. Qual. Technol. 1980; 12: 214
- 22 Shu X.-Z, Liu X.-Y, Xiao H.-Q, Ji K.-G, Guo L.-N, Qi C.-Z, Liang Y.-M. Adv. Synth. Catal. 2007; 349: 2493