Synlett 2013; 24(4): 432-436
DOI: 10.1055/s-0032-1318198
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Short and Versatile Heterobifunctional Linkers for Conjugation of Bioactive Molecules with (Radio-)Labels

Jan-Martin Heldt*
Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, 01328 Dresden, Germany   Fax: +49(351)2603232   Email: j.heldt@hzdr.de
,
Oliver Kerzendörfer
Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, 01328 Dresden, Germany   Fax: +49(351)2603232   Email: j.heldt@hzdr.de
,
Constantin Mamat
Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, 01328 Dresden, Germany   Fax: +49(351)2603232   Email: j.heldt@hzdr.de
,
Frank Starke
Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, 01328 Dresden, Germany   Fax: +49(351)2603232   Email: j.heldt@hzdr.de
,
Hans-Jürgen Pietzsch
Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, 01328 Dresden, Germany   Fax: +49(351)2603232   Email: j.heldt@hzdr.de
,
Jörg Steinbach
Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, 01328 Dresden, Germany   Fax: +49(351)2603232   Email: j.heldt@hzdr.de
› Author Affiliations
Further Information

Publication History

Received: 10 December 2012

Accepted after revision: 21 January 2013

Publication Date:
06 February 2013 (online)


Abstract

The preparation of a series of short and versatile (eleven and twelve atom length) hydrophilic heterobifunctional linkers from low-cost chemicals using simple experimental setups is described. The approach can be used to connect high molecular weight bioactive molecules with azamacrocycles to enable radiolabeling with radiometals. The ring opening reaction of three cyclic anhydrides with 2-(2-aminoethoxy)ethanol afforded precursors 4ac, which were subsequently converted into various heterobifunctional linkers for radiofluorination, Huisgen–Click approaches, or Staudinger ligation and for solid-phase peptide synthesis. As examples for successful building block ligation using the strain-promoted Huisgen cycloaddition on the one hand and the traceless Staudinger approach on the other hand, the Cetuximab antibody was modified by using 13a in a convenient two-step procedure.

Supporting Information

 
  • References and Notes

  • 1 Hermanson GT. Bioconjugate Techniques . Academic Press; San Diego, CA: 1996
  • 2 Mamat C, Ramenda T, Wuest FR. Mini-Rev. Org. Chem. 2009; 6: 21
  • 4 Reeves TD, Hill EG, Armeson KE, Gillespie MB. Otolaryng. Head Neck 2011; 144: 676
  • 5 Vincenzi B, Schiavon G, Silletta M, Santini D, Tonini G. Crit. Rev. Oncol. Hemat. 2008; 68: 93
  • 6 Aerts HJ. W. L, Dubois L, Perk L, Vermaelen P, van Dongen GA. M. S, Wouters BG, Lambin P. J. Nucl. Med. 2009; 50: 123
  • 7 Eiblmaier M, Meyer LA, Watson MA, Fracassol PM, Pike LJ, Anderson CJ. J. Nucl. Med. 2008; 49: 1472
  • 8 Niu G, Li Z, Xie J, Le Q.-T, Chen X. J. Nucl. Med. 2009; 50: 1116
  • 9 Chen XY, Niu G, Sun XL, Cao QZ, Courter D, Koong A, Le QT, Gambhir SS. Clin. Cancer Res. 2010; 16: 2095
  • 10 Matsushima K, Kawamura N, Nakatsuji Y, Okahara M. Bull. Chem. Soc. Jpn. 1982; 55: 2181
  • 11 Matsushima K, Kawamura N, Okahara M. Tetrahedron Lett. 1979; 20: 3445
  • 12 Yamaguchi K, Kuboniwa H, Murakami N, Hirao A, Nakahama S, Yamazaki N. Bull. Chem. Soc. Jpn. 1989; 62: 1097
  • 13 Cook AG, Baumeister U, Tschierske C. J. Mater. Chem. 2005; 15: 1708
  • 14 Nakatsuji Y, Kawamura N, Okahara M. Synthesis 1981; 42
  • 15 Synthesis of O-(N-succinimidyl) 4-oxo-4-{2-[2-(tosyloxy)ethoxy]ethylamino}butanoate (11a): Compound 10a (68 mg, 0.19 mmol) was dissolved in anhydrous DMF (1.5 mL). TSTU (1.2 equiv, 68 mg) and DIEA (1.2 equiv, 39.6 μL) were added and the solution allowed to react at r.t. for 30 min. The DMF was evaporated, the residue dissolved in CH2Cl2 and extracted twice with 5% aqueous acetic acid. The organic phase was evaporated to give the product (81 mg, 93%) as a colorless oil; Rf = 0.25 (CH2Cl2–MeCN, 7:3). 1H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 8.4 Hz, 2 H), 7.32 (d, J = 8.0 Hz, 2 H), 6.16 (s, 1 H), 4.16 (d, J = 4.6 Hz, 2 H), 3.62 (t, J = 4.5 Hz, 2 H), 3.48 (t, J = 4.8 Hz, 2 H), 3.39 (t, J = 5.0 Hz, 2 H), 2.95 (t, J = 7.1 Hz, 2 H), 2.80 (s, 4 H), 2.58 (t, J = 7.1 Hz, 2 H), 2.42 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 170.2, 169.2, 168.4, 145.2, 133.3, 130.1, 128.1, 70.0, 69.3, 68.6, 39.4, 30.8, 27.0, 25. 8, 21.9. MS (ESI+): m/z = 457.61 [M+H]+, 479.61 [M+Na]+, 495.58 [M+K]+. Anal. Calcd for C19H24N2O9S: C, 49.99; H, 5.30; N, 6.14. Found: C, 50.10; H, 5.25; N, 6.40.
  • 16 Cai LS, Lu SY, Pike VW. Eur. J. Org. Chem. 2008; 2853
  • 17 Conti PS, Li ZB. Adv. Drug Delivery Rev. 2010; 62: 1031
  • 18 Synthesis of O-(N-succinimidyl) 4-[2-(2-azidoethoxy) ethylamino]-4-oxobutanoate (13a): Compound 12a (120 mg, 0.52 mmol) was dissolved in anhydrous DMF (3 mL). TSTU (1.2 equiv, 188 mg) and DIEA (1.2 equiv, 109 μL) were added and the solution was allowed to react at r.t. for 30 min. The DMF was evaporated and the residue was dissolved in chloroform and extracted three times with brine containing 5% acetic acid. The chloroform phase was evaporated to give the product (136 mg, 80%) as a colorless oil; Rf = 0.5 (EtOAc–HOAc, 19:1). This crude product was successfully engaged in coupling reactions with the antibody Cetuximab. Additional purification by column chromatography on silica gel was achieved by using EtOAc–HOAc (19:1) as eluent. 1H NMR (400 MHz, CDCl3): δ = 6.11 (s, 1 H), 3.62 (t, J = 5.0 Hz, 2 H), 3.52 (t, J = 4.8 Hz, 2 H), 3.43 (q, J = 5.0 Hz, 2 H), 3.32 (t, J = 4.9 Hz, 2 H), 2.93 (t, J = 7.1 Hz, 2 H), 2.78 (s, 4 H), 2.56 (t, J = 7.1 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 170.3, 169.2, 168.4, 70.3, 69.9, 50.8, 39.5, 30.7, 26.9, 25.8. MS (ESI+): m/z = 328.34 [M+H]+, 350.35 [M+Na]+, 366.34 [M+K]+. Anal. Calcd for C12H17N5O6: C, 44.04; H, 5.24; N, 21.40. Found: C, 43.96; H, 5.12; N, 21.55.
  • 19 Starke F, Walther M, Pietzsch H.-J. ARKIVOC 2010; 350
  • 20 Mamat C, Flemming A, Köckerling M, Steinbach J, Wuest FR. Synthesis 2009; 3311
  • 21 Synthesis of 2-(diphenylphosphano)phenyl 5-(1-dansylpiperazinyl)valerate (19): Compound 18 (500 mg, 1.19 mmol) and 2-(diphenylphosphano)phenol 17 (400 mg, 1.44 mmol) were dissolved in anhydrous THF (15 mL), EDC (340 mg, 1.77 mmol) and DMAP (cat.) were added and the mixture was stirred at 50 °C overnight. Water (25 mL) was added, the layers were separated, the aqueous layer was extracted with ethyl acetate (3 × 25 mL) and the combined organic layers were dried over Na2SO4. After evaporation of the solvent, the crude product was purified by column chromatography (EtOAc–petroleum ether, 2:1) to give 19 (85%) as a yellow syrup. 1H NMR (400 MHz, CDCl3): δ = 1.27–1.47 (m, 4 H), 2.15–2.27 (m, 4 H), 2.40 (br. s, 4 H), 2.85 (s, 6 H), 3.16 (br. s, 4 H), 6.74–6.79 (m, 1 H), 7.04–7.11 (m, 2 H), 7.12 (d, J = 7.4 Hz, 1 H), 7.21–7.35 (m, 11 H), 7.50 (dd, J = 7.4, 8.6 Hz, 2 H), 8.17 (dd, J = 1.2, 7.4 Hz, 1 H), 8.42 (d, J = 8.6 Hz, 1 H), 8.52 (d, J = 8.6 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 22.3, 33.7, 45.5, 45.6, 45.7, 52.5, 57.8, 115.4, 120.0, 122.6, 123.3, 126.2, 128.1, 128.6, 128.7, 128.8, 129.1, 130.0, 130.2, 130.7, 130.8, 131.7, 131.8, 132.6, 133.8, 133.9, 134.1, 135.8, 151.8, 152.7, 152.9, 171.3. 31P NMR (176 MHz, CDCl3): δ = δ = –15.2 ppm. MS (ESI+): m/z 680.44 [M+H]+, 702.51 [M+Na]+. Anal. Calcd for C39H42N3O4PS: C, 68.90; H, 6.23; N, 6.18. Found: C, 69.00; H, 6.02; N, 6.29.