Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(6): 741-746
DOI: 10.1055/s-0032-1318332
DOI: 10.1055/s-0032-1318332
letter
An Efficient Strategy for Protecting Dihydroxyl Groups of Catechols
Further Information
Publication History
Received: 15 January 2013
Accepted after revision: 11 February 2013
Publication Date:
11 March 2013 (online)
Abstract
A novel strategy for protecting dihydroxyl groups of catechols has been developed. Base-mediated cyclizations of catechols with 1,3-dibromopropane provided the corresponding benzo[b]1,4-dioxepans, and herefrom the protecting group was easily cleaved by aluminum chloride. The preparation of the antibacterial and antifungal agent 4-(2-aminothiazol-4-yl)benzene-1,2-diol from catechol reliably verified its availability amenable to various harsh reaction conditions.
Key words
catechols - protection - ortho-dihydroxyl - 1,3-dibromopropane - benzo[b]1,4-dioxepans - deprotection - aluminum chlorideSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Reinhold DF, Firestone RA, Gaines WA, Chemerda JM, Sletzinger M. J. Org. Chem. 1968; 33: 1209
- 1b Chang Y.-A, Ares J, Anderson K, Sabol B, Wallace RA, Farooqui T, Uretsky N, Miller DD. J. Med. Chem. 1987; 30: 214
- 1c Bevan S, Hothi S, Hughes G, James IF, Rang HP, Shah K, Walpole CS, Yeats JC. Br. J. Pharmacol. 1992; 107: 544
- 1d Rietjens SJ, Bast A, Haenen GR. M. M. J. Agric. Food Chem. 2007; 55: 7609
- 1e Dalence-Guzman MF, Berglund M, Skogvall S, Sterner O. Bioorg. Med. Chem. 2008; 16: 2499
- 1f Hao W, Hu Y, Niu C, Huang X, Chang C.-PB, Gibbons J, Xu J. Bioorg. Med. Chem. Lett. 2008; 18: 4988
- 1g Wang W.-L, Chai SC, Huang M, He H.-Z, Hurley TD, Ye Q.-Z. J. Med. Chem. 2008; 51: 6110
- 2 Smith RV, Velagapudi RB, McLean AM, Wilcox RE. J. Med. Chem. 1985; 28: 613
- 3 Liedhegner EA. S, Steller KM, Mieyal JJ. Chem. Res. Toxicol. 2011; 24: 1644
- 4 Guay DR. P. Pharmacotherapy 1999; 19: 6
- 5 Holm KJ, Spencer CM. Drugs 1999; 58: 159
- 6 Fitton A, Benfield P. Drugs 1990; 39: 308
- 7 O’Donnell J, Zeppenfeld D, McConnell E, Pena S, Nedergaard M. Neurochem. Res. 2012; 37: 2496
- 8a DeBernardis JF, Arendsen DL, Kyncl JJ, Kerkman DJ. J. Med. Chem. 1987; 30: 178
- 8b Sit S.-Y, Xie K, Jacutin-Porte S, Taber MT, Gulwadi AG, Korpinen CD, Burris KD, Molski TF, Ryan E, Xu C, Wong H, Zhu J, Krishnananthan S, Gao Q, Verdoorn T, Johnson G. J. Med. Chem. 2002; 45: 3660
- 9a Kawase M, Sinhababu AK, McGhee EM, Milby T, Borchardt RT. J. Med. Chem. 1990; 33: 2204
- 9b O’Malley SJ, Tan KL, Watzke A, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2005; 127: 13496
- 10a Cabezon B, Quesada E, Esperanza S, Torres T. Eur. J. Org. Chem. 2000; 2767
- 10b Madrona A, Pereira-Caro G, Mateos R, Rodriguez G, Trujillo M, Fernandez-Bolanos J, Espartero JL. Molecules 2009; 14: 1762
- 11a Gambacorta A, Tofani D, Bernini R, Migliorini A. J. Agric. Food Chem. 2007; 55: 3386
- 11b Bernini R, Crisante F, Merendino N, Molinari R, Soldatelli MC, Velotti F. Eur. J. Med. Chem. 2011; 46: 439
- 12 Alig L, Alsenz J, Andjelkovic M, Bendels S, Benardeau A, Bleicher K, Bourson A, David-Pierson P, Guba W, Hildbrand S, Kube D, Lubbers T, Mayweg AV, Narquizian R, Neidhart W, Nettekoven M, Plancher J.-M, Rocha C, Rogers-Evans M, Rover S, Schneider G, Taylor S, Waldmeier P. J. Med. Chem. 2008; 51: 2115
- 13a Nicolaou KC, Wang J, Tang Y. Angew. Chem. Int. Ed. 2008; 47: 1432
- 13b Allais F, Martinet S, Ducrot P.-H. Synthesis 2009; 3571
- 14 Ariza X, Pineda O, Vilarrasa J, Shipps GW, Ma Y, Dai X. Org. Lett. 2001; 3: 1399
- 15 Kaupp G, Naimi-Jamal MR, Stepanenko V. Chem. Eur. J. 2003; 9: 4156
- 16a Mills SJ, Komander D, Trusselle MN, Safrany ST, van Aalten DM. F, Potter BV. L. ACS Chem. Biol. 2007; 2: 242
- 16b Mills SJ, Vandeput F, Trusselle MN, Safrany ST, Erneux C, Potter BV. L. ChemBioChem 2008; 9: 1757
- 16c Prasain K, Nguyen TD. T, Gorman MJ, Barrigan LM, Peng Z, Kanost MR, Syed LU, Li J, Zhu KY, Hua DH. Bioorg. Med. Chem. 2012; 20: 1679
- 17a Chen J, Yang F, Ji G.-Z, Yang H, Shen Z.-W, Zhou X.-J. Langmuir 2005; 21: 10931
- 17b Pak JJ, Mayo JL, Shurdha E. Tetrahedron Lett. 2006; 47: 233
- 18 Bernini R, Cacchi S, Fabrizi G, Filisti E. Org. Lett. 2008; 10: 3457
- 19a Mills SJ, Dozol H, Vandeput F, Backers K, Woodman T, Erneux C, Spiess B, Potter BV. L. ChemBioChem 2006; 7: 1696
- 19b Cacciarini M, Cordiano E, Nativi C, Roelens S. J. Org. Chem. 2007; 72: 3933
- 19c Percec V, Imam MR, Peterca M, Leowanawat P. J. Am. Chem. Soc. 2012; 134: 4408
- 20 Narayana B, Raj KK. V, Ashalatha BV. Phosphorus, Sulfur Silicon Relat. Elem. 2006; 181: 1381
- 21a Gillespie JP, Amoros LG, Stermitz FR. J. Org. Chem. 1974; 39: 3239
- 21b Banwell MG, Flynn BL, Stewart SG. J. Org. Chem. 1998; 63: 9139
- 21c Bushby RJ, Lu Z. Synthesis 2001; 763
- 22 Huang W.-B, Du C.-Y, Jiang J.-A, Ji Y.-F. Res. Chem. Intermed. 2012; 38 in press; DOI: 10.1007/s11164-012-0804-6
- 23 Malecha JW, Noble SA, Wiley BM, Hoffman TZ, Bonnefous C, Sertic M, Wash PL, Smith ND, Hassig CA, Scranton SA, Payne JE, Hager J. US 2007/0027184A1, 2007 ; Chem. Abstr. 2007, 146, 206220
- 24 General Cyclization Procedure To EtOH (15 mL) were added in turn catechols 1 (5.0 mmol), K2CO3 (2.42 g, 17.5 mmol) and 1,3-dibromopropane (0.66 mL, 6.5 mmol), then the mixture was heated at reflux for 5 h. The resulting mixture was filtered and concentrated to acquire the crude product, the purification of which by column chromatography afforded the corresponding product 2 with PE–EtOAc (30:1, v/v) as eluents. Representative Compound 2a Colorless liquid, 0.69 g (92% yield). 1H NMR (400 MHz, CDCl3): δ = 2.19 (quint, J = 5.6 Hz, 2 H, CH2), 4.22 (t, J = 5.6 Hz, 4 H, CH2), 6.90–6.95 (m, 2 H, Ar), 6.96–7.01 (m, 2 H, Ar) ppm. 13C NMR (100 MHz, CDCl3): δ = 31.9, 70.5 (2 C), 121.6 (2 C), 123.3 (2 C), 151.2 (2 C) ppm. ESI-HRMS: m/z [M + H+] calcd for C9H11O2: 151.0759; found: 151.0757
- 25 General Deprotection Procedure A solution of benzo[b]1,4-dioxepans 2 (3.0 mmol) in benzene (10 mL) was treated by anhyd AlCl3 (1.20 g, 9.0 mmol), and the mixture was heated to reflux for specified time. Then, the reaction mixture was quenched by sat. aq NH4Cl (20 mL), and the aqueous phase was extracted with EtOAc (3 × 10 mL). The combined organic phase was washed by sat. brine (2 × 20 mL) and concentrated to provide the crude product, the purification of which by column chromatography afforded the corresponding product 1 with PE–EtOAc (10:1, v/v) as eluents.
- 26 Olah GA, Prakash GK. S, Iyer PS, Tashiro M, Yamato T. J. Org. Chem. 1987; 52: 1881
- 27 Synthetic Procedures for Compounds 4–6 Compound 4 Bromine (0.17 mL, 3.4 mmol, dissolved in 2 mL EtOH) was added dropwise to a stirred solution of 3 (0.50 g, 2.6 mmol) in EtOH (8 mL), and the mixture was stirred at r.t. for 1 h. Then, the solvent was removed to get the crude product, the purification of which by column chromatography afforded the pure product 4 with PE–CH2Cl2 (15:1, v/v) as eluents; white solid; mp 72–74 °C; 0.62 g (88% yield). 1H NMR (400 MHz, CDCl3): δ = 2.25 (quint, J = 5.6 Hz, 2 H, CH2), 4.28 (t, J = 5.6 Hz, 2 H, CH2), 4.34 (t, J = 5.6 Hz, 2 H, CH2), 4.37 (s, 2 H, CH2), 7.00 (d, J = 8.4 Hz, 1 H, Ar), 7.57 (d, J = 8.4 Hz, 1 H, Ar), 7.60 (s, 1 H, Ar) ppm. 13C NMR (100 MHz, CDCl3): δ = 30.79, 30.81, 70.2, 70.4, 121.6, 122.7, 124.7, 129.1, 150.6, 156.0, 189.8 ppm. ESI-HRMS: m/z [M + H+] calcd for C11H12O3Br: 270.9970; found: 270.9975. Compound 5 A solution of 4 (0.54 g, 2.0 mmol) and thiourea (0.18 g, 2.4 mmol) in absolute EtOH (12 mL) was refluxed for 2 h. After removal of the solvent, the residue was treated with aq NaOH (1 mol/L, 10 mL), and extracted with EtOAc (3 × 10 mL). The combined organic phase was concentrated to provide the crude product, the purification of which by column chromatography afforded the pure product 5 with PE–EtOAc (4:1, v/v) as eluents; light yellow solid; mp 174–177 °C, 0.46 g (92% yield). 1H NMR (400 MHz, CDCl3): δ = 2.20 (quint, J = 5.2 Hz, 2 H, CH2), 4.22 (t, J = 5.2 Hz, 4 H, CH2), 5.05 (s, 2 H, NH2), 6.60 (s, 1 H, thiazole), 6.97 (d, J = 8.4 Hz, 1 H, Ar), 7.34 (d, J = 8.4 Hz, 1 H, Ar), 7.40 (s, 1 H, Ar) ppm. 13C NMR (100 MHz, CDCl3): δ = 31.8, 70.6 (2 C), 102.1, 119.3, 121.1, 121.7, 130.3, 150.5, 151.0, 151.2, 167.1. ESI-HRMS: m/z [M + H+] calcd for C12H13N2O2S: 249.0698; found: 209.0693. Compound 6 A solution of 5 (0.40 g, 1.6 mmol) in benzene (8 mL) was treated by anhyd AlCl3 (0.64 g, 4.8 mmol), and the mixture was heated to reflux for 10 h. Then, the mixture was quenched by sat. aq NH4Cl (20 mL). Then aq NaOH (1 mol/L) was added to keep pH 7. The aqueous phase was extracted with EtOAc (3 × 20 mL). The combined organic phase was washed by sat. brine (2 × 20 mL), and then concentrated to provide the crude product, the purification of which by column chromatography afforded the pure product 6 with PE–EtOAc (2:1, v/v) as eluents; yellow solid; mp 228–231 °C; 0.28 g (84% yield). 1H NMR (400 MHz, DMSO-d 6): δ = 6.64 (s, 1 H, thiazole), 6.69 (d, J = 8.0 Hz, 1 H, Ar), 6.92 (s, 2 H, OH), 7.06 (dd, J 1 = 8.0 Hz, J 2 = 2.0 Hz, 1 H, Ar), 7.19 (d, J = 2.0 Hz, 1 H, Ar), 8.90 (s, 2 H, NH2) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 98.3, 113.3, 115.4, 116.9, 126.8, 144.8, 144.9, 150.3, 167.7 ppm. ESI-HRMS: m/z [M + H+] calcd for C9H9N2O2S: 209.0385; found: 209.0381.