Der Nuklearmediziner 2012; 35(04): 215-221
DOI: 10.1055/s-0032-1327719
Strahlenexposition bei Hybridbildgebung
© Georg Thieme Verlag KG Stuttgart · New York

PET/CT- und SPECT/CT-Diagnostik in der Onkologie – Wie kann die Strahlenexposition reduziert werden?

PET/CT and SPECT/CT in Oncology – How can the Radiation Exposure be Reduced?
R. A. Bundschuh
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg
,
U. Eberlein
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg
,
M. Lassmann
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg
,
A. K. Buck
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg
› Author Affiliations
Further Information

Publication History

Publication Date:
12 December 2012 (online)

Zusammenfassung

Die Koregistrierung von CT-Daten im Rahmen nuklearmedizinischer Untersuchungen erlaubt eine direkte Korrelation anatomischer und funktioneller Informationen. Szintigrafische Befunde können so präzise lokalisiert und die Dignität unklarer CT-Befunde aufgrund funktioneller Daten beurteilt werden. Bei zahlreichen onkologischen Fragestellungen konnte eine Überlegenheit der Hybridtechnik gegenüber separat durchgeführter anatomischer und funktioneller Untersuchungen gezeigt werden. Die Einführung der PET/CT in die klinische Diagnostik hat aufgrund einer hohen diagnostischen Treffsicherheit zu einer Änderung des Diagnose-Algorithmus einiger solider Tumoren und hämatologischer Neoplasien geführt. Bezüglich SPECT/CT konnte eine verbesserte Diagnostik von Knochenmetastasen, neuroendokrinen Tumoren und von Wächterlymphknoten bei Erstdiagnose eines Mammakarzinoms oder malignen Melanoms belegt werden.

Die Anzahl der mittels Hybridgeräten durchgeführten Untersuchungen gehört zu den am schnellsten wachsenden unter den bildgebenden Verfahren in der Medizin. Mit zunehmender Untersuchungsfrequenz rückt die Minimierung der Strahlenexposition immer mehr in den Fokus und der Untersuchungsablauf wird kontinuierlich optimiert. Viele onkologische Fragestellungen können bereits mit einer ’low-dose´-PET/CT- oder -SPECT/CT-Untersuchung hinreichend beantwortet werden. Durch die Verwendung der neuesten Gerätetechnik kann die Strahlenexposition sowohl seitens der CT als auch durch die applizierte Aktivität der Radiopharmaka wesentlich beeinflusst werden. Dieser Artikel soll eine Übersicht über die mit Hybriduntersuchungen verbundene Strahlenexposition geben und zeigen, wie diese bereits heute signifikant reduziert werden kann. Entscheidend ist, dass ionisierende Strahlung nur bei eindeutigen klinischen Fragestellungen zum Einsatz kommen darf.

Abstract

Co-registration of CT data as part of nuclear medical imaging studies allows a direct correlation of anatomic and functional information. Scintigraphic findings can be precisely localized and lesions undefined at CT can be characterized based on functional properties. In a number of clinical scenarios, superiority of hybrid imaging over separately performed anatomically and functionally based imaging studies has been demonstrated. The introduction of PET/CT into the clinical diagnostics has led to a change of the diagnostic algorithm in a number of solid and hematological neoplasms, based on a higher diagnostic accuracy. Regarding SPECT/CT, a more precise diagnosis of bone metastases, neuroendocrine tumors and sentinel lymph node studies in patients with newly diagnosed breast cancer or malignant melanoma has been demonstrated.

In clinical medicine, hybrid techniques represent the most growing imaging modality. With increasing numbers of scans, minimization of radia­tion exposure becomes more relevant, leading to further optimization of the examination protocols. Many clinical questions can be sufficiently answered using ‛low-dose’ PET/CT- or SPECT/CT protocols. With the most recent scanner technology, radiation exposure can be markedly reduced. This applies to the CT component as well as to the administered activity of radiopharmaceuticals. This article reports on the radiation exposure caused by hybrid imaging and shows how further reduction is possible. It is most relevant to apply ionizing radiation only if there is a clear clinical indication.

 
  • Literatur

  • 1 Lammering G, De Ruysscher D, van Baardwijk A et al. The use of FDG-PET to target tumors by radiotherapy. Strahlenther Onkol 2010; 186 (09) 471-481
  • 2 Weber WA, Figlin R. Monitoring cancer treatment with PET/CT: does it make a difference?. J Nucl Med 2007; 48 (Suppl. 01) 36 S-44 S
  • 3 Weber WA, Wieder H. Monitoring chemotherapy and radiotherapy of solid tumors. European journal of nuclear medicine and molecular imaging 2006; 33 (Suppl. 01) 27-37
  • 4 Smith-Bindman R, Miglioretti DL, Johnson E et al. Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996–2010. Jama 2012; 307 (22) 2400-2409 Epub 2012/06/14
  • 5 Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Seminars in nuclear medicine 2003; 33 (03) 193-204
  • 6 Schauer DA, Linton OW. NCRP Report No. 160, Ionizing Radiation Exposure of the Population of the United States, medical exposure – are we doing less with more, and is there a role for health physicists?. Health physics 2009; 97 (01) 1-5 Epub 2009/06/11
  • 7 ICRP . Publication 103: The 2007 recommendations of the International Commission of Radiological Protection. Ann ICRP 2007; 37 (2–4)
  • 8 Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation . National Research Council, Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington, D.C.: The National Academies Press; 2006
  • 9 Stiles BM, Mirza F, Towe CW et al. Cumulative radiation dose from medical imaging procedures in patients undergoing resection for lung cancer. The Annals of thoracic surgery 2011; 92 (04) 1170-1178 discussion 8–9 Epub 2011/07/12
  • 10 Preston DL, Ron E, Tokuoka S et al. Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiation research 2007; 168 (01) 1-64 Epub 2007/08/29
  • 11 Pierce DA, Preston DL. Radiation-related cancer risks at low doses among atomic bomb survivors. Radiation research 2000; 154 (02) 178-186 Epub 2000/08/10
  • 12 Smith-Bindman R, Lipson J, Marcus R et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Archives of internal medicine 2009; 169 (22) 2078-2086 Epub 2009/12/17
  • 13 Eschner W, Schmidt M, Dietlein M et al. PROLARA: prognosis-based lifetime attributable risk approximation for cancer from diagnostic radiation exposure. European journal of nuclear medicine and molecular imaging 2010; 37 (01) 131-135 Epub 2009/08/08
  • 14 Brix G, Lechel U, Glatting G et al. Radiation exposure of patients undergoing whole-body dual-modality 18 F-FDG PET/CT examinations. J Nucl Med 2005; 46 (04) 608-613
  • 15 Xia T, Alessio AM, Kinahan PE. Limits of Ultra-Low Dose CT Attenuation Correction for PET/CT. IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium 2010; 2009(Oct. 24 2009-Nov. 1 2009): 3074-3079 Epub 2010/01/29
  • 16 Xia T, Alessio AM, De Man B et al. Ultra-low dose CT attenuation correction for PET/CT. Physics in medicine and biology 2012; 57 (02) 309-328 Epub 2011/12/14
  • 17 ICRP . Radiation dose to patients from radiopharmaceuticals (Addendum 3 to ICRP Publication 53 ICRP Publication 106). Annals of the ICRP 2008; 38 (1–2) 1-197 Epub 2009/01/22
  • 18 ICRP . Radiation dose to patients from radiopharmaceuticals (addendum 2 to ICRP publication 53). Annals of the ICRP 1998; 28 (1–126) Epub 2000/06/07
  • 19 ICRP . Radiation dose to patients from radiopharmaceuticals (ICRP publication 53). Annals of the ICRP 1987; 18: 1-377
  • 20 Eberlein U, Broer JH, Vandevoorde C et al. Biokinetics and dosimetry of commonly used radiopharmaceuticals in diagnostic nuclear medicine – a review. Eur J Nucl Med Mol Imaging 2011; 38 (12) 2269-2281 Epub 2011/08/31
  • 21 Chang T, Chang G, Kohlmyer S et al. Effects of injected dose, BMI and scanner type on NECR and image noise in PET imaging. Physics in medicine and biology 2011; 56 (16) 5275-5285 Epub 2011/07/28
  • 22 Lecomte R. Novel detector technology for clinical PET. European journal of nuclear medicine and molecular imaging 2009; 36 (Suppl. 01) S69-S85
  • 23 Jakoby BW, Bercier Y, Conti M et al. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Physics in medicine and biology 2011; 56 (08) 2375-2389 Epub 2011/03/24
  • 24 Murray I, Kalemis A, Glennon J et al. Time-of-flight PET/CT using low-activity protocols: potential implications for cancer therapy monitoring. European journal of nuclear medicine and molecular imaging 2010; 37 (09) 1643-1653 Epub 2010/04/30
  • 25 Jakoby BW, Bercier Y, Watson CC et al. Performance Characteristics of a New LSO PET/CT Scanner With Extended Axial Field-of-View and PSF Reconstruction. Ieee T Nucl Sci 2009; 56 (03) 633-639
  • 26 Stansfield EC, Sheehy N, Zurakowski D et al. Pediatric 99mTc-MDP bone SPECT with ordered subset expectation maximization iterative reconstruction with isotropic 3D resolution recovery. Radiology 2010; 257 (03) 793-801 Epub 2010/09/23
  • 27 Sheehy N, Tetrault TA, Zurakowski D et al. Pediatric 99mTc-DMSA SPECT performed by using iterative reconstruction with isotropic resolution recovery: improved image quality and reduced radiopharmaceutical activity. Radiology 2009; 251 (02) 511-516 Epub 2009/03/24
  • 28 Mattsson S, Soderberg M.. Radiation dose management in CT, SPECT/CT and PET/CT techniques. Radiation protection dosimetry 2011; 147 (1/2) 13-21 Epub 2011/07/05
  • 29 Soderberg M, Gunnarsson M. Automatic exposure control in computed tomography – an evaluation of systems from different manufacturers. Acta Radiol 2010; 51 (06) 625-634 Epub 2010/05/01
  • 30 Prakash P, Kalra MK, Digumarthy SR et al. Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience. Journal of computer assisted tomography 2010; 34 (01) 40-45 Epub 2010/02/02
  • 31 Christner JA, Zavaletta VA, Eusemann CD et al. Dose reduction in helical CT: dynamically adjustable z-axis X-ray beam collimation. AJR American journal of roentgenology 2010; 194 (01) W49-W55 Epub 2009/12/24
  • 32 Delso G, Ziegler S. PET/MRI system design. European journal of nuclear medicine and molecular imaging 2009; 36 (Suppl. 01) S86-S92
  • 33 Schwenzer NF, Schmidt H, Claussen CD. Whole-body MR/PET: applications in abdominal imaging. Abdominal imaging 2012; 37 (01) 20-28 Epub 2011/10/18
  • 34 Tolvanen T, Yli-Kerttula T, Ujula T et al. Biodistribution and radiation dosimetry of [(11)C]choline: a comparison between rat and human data. European journal of nuclear medicine and molecular imaging 2010; 37 (05) 874-883 Epub 2010/01/14
  • 35 Eberlein U, Lassmann M. Dosimetry of [(68)Ga]-labeled compounds. Applied radiation and isotopes: including data, instrumentation and methods for use in agriculture, industry and medicine 2012; Epub 2012/08/14
  • 36 Law M, Ma WH, Leung R et al. Evaluation of patient effective dose from sentinel lymph node lymphoscintigraphy in breast cancer: a phantom study with SPECT/CT and ICRP-103 recommendations. European journal of radiology 2012; 81 (05) e717-e720 Epub 2012/03/06