Planta Med 2013; 79(11): 933-938
DOI: 10.1055/s-0032-1328649
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Dodoviscin A Inhibits Melanogenesis in Mouse B16-F10 Melanoma Cells

Guirui Yan
1   Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
,
Jingjie Zhu
1   Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
,
Laibin Zhang
2   Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, China
,
Zhijian Xu
1   Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
,
Gaihong Wang
1   Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
,
Weiliang Zhu
1   Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
,
Aijun Hou
2   Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, China
,
Heyao Wang
1   Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
› Author Affiliations
Further Information

Publication History

received 25 November 2012
revised 04 May 2013

accepted 12 May 2013

Publication Date:
26 June 2013 (online)

Abstract

Nowadays, abnormal hyperpigmentation in human skin such as melasma, freckles, and chloasma has become a serious esthetic problem. Cutaneous depigmenting agents could be used to treat these hyperpigmentation-associated dieseases. Dodoviscin A is a natural product isolated from the aerial parts of Dodonaea viscosa. In the present study, we evaluated the effect of dodoviscin A on melanin production in B16-F10 melanoma cells for the first time. We found that dodoviscin A inhibited melanin biosynthesis induced by 3-isobutyl-1-methylxanthine and PD98059 significantly, and there was no obvious effect on the viability of dodoviscin A-treated B16-F10 cells. Meanwhile, dodoviscin A could suppress the activity of mushroom tyrosinase in the cell-free assay system and also decrease 3-isobutyl-1-methylxanthine-induced tyrosinase activity and expression of mature tyrosinase protein in B16-F10 cells. Western blotting analysis showed that dodoviscin A inhibited 3-isobutyl-1-methylxanthine and forskolin-induced phosphorylation of the cAMP response element binding protein in B16-F10 cells. These results indicate that dodoviscin A may be a new promising pigmentation-altering agent for cosmetic and therapeutic applications.

Supporting Information

 
  • References

  • 1 Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature 2007; 445: 843-850
  • 2 Maeda K, Fukuda M. Arbutin: mechanism of its depigmenting action in human melanocyte culture. J Pharmacol Exp Ther 1996; 276: 765-769
  • 3 Parvez S, Kang M, Chung HS, Bae H. Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytother Res 2007; 21: 805-816
  • 4 Chang TS. An updated review of tyrosinase inhibitors. Int J Mol Sci 2009; 10: 2440-2475
  • 5 Rolff M, Schottenheim J, Decker H, Tuczek F. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme. Chem Soc Rev 2011; 40: 4077-4098
  • 6 Ismaya WT, Rozeboom HJ, Weijn A, Mes JJ, Fusetti F, Wichers HJ, Dijkstra BW. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone. Biochemistry 2011; 50: 5477-5486
  • 7 Ando H, Kondoh H, Ichihashi M, Hearing VJ. Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase. J Invest Dermatol 2007; 127: 751-761
  • 8 Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 2004; 84: 1155-1228
  • 9 Park HY, Kosmadaki M, Yaar M, Gilchrest BA. Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci 2009; 66: 1493-1506
  • 10 Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature 2007; 445: 843-850
  • 11 Bellei B, Flori E, Izzo E, Maresca V, Picardo M. GSK3beta inhibition promotes melanogenesis in mouse B16 melanoma cells and normal human melanocytes. Cell Signal 2008; 20: 1750-1761
  • 12 Bellei B, Pitisci A, Catricala C, Larue L, Picardo M. Wnt/beta-catenin signaling is stimulated by alpha-melanocyte-stimulating hormone in melanoma and melanocyte cells: implication in cell differentiation. Pigment Cell Melanoma Res 2011; 24: 309-325
  • 13 Singh SK, Sarkar C, Mallick S, Saha B, Bera R, Bhadra R. Human placental lipid induces melanogenesis through p 38 MAPK in B16F10 mouse melanoma. Pigment Cell Res 2005; 18: 113-121
  • 14 Busca R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 2000; 13: 60-69
  • 15 Otreba M, Rok J, Buszman E, Wrzesniok D. [Regulation of melanogenesis: the role of cAMP and MITF]. Postepy Hig Med Dosw 2012; 66: 33-40
  • 16 Roskoski jr. R, Roskoski LM. Activation of tyrosine hydroxylase in PC12 cells by the cyclic GMP and cyclic AMP second messenger systems. J Neurochem 1987; 48: 236-242
  • 17 Kaufman S. The phenylalanine hydroxylating system. Adv Enzymol Relat Areas Mol Biol 1993; 67: 77-264
  • 18 Dai SJ, Ma ZB, Wu Y, Chen RY, Yu DQ. Guangsangons F–J, anti-oxidant and anti-inflammatory Diels-Alder type adducts, from Morus macroura Miq. Phytochemistry 2004; 65: 3135-3141
  • 19 Tan YX, Yan RY, Wang HQ, Chen RY, Yu DQ. Wittiorumins A–F, antioxidant diels-alder-type adducts from Morus wittiorum . Planta Med 2009; 75: 249-255
  • 20 Du J, He ZD, Jiang RW, Ye WC, Xu HX, But PPH. Antiviral flavonoids from the root bark of Morus alba L. Phytochemistry 2003; 62: 1235-1238
  • 21 Phan VK, Chau VM, Nguyen TD, La VK, Dan TH, Nguyen HN, Nguyen XC, Hoang TH, Trinh VL. Aporphine alkaloids, clerodane diterpenes, and other constituents from Tinospora cordifolia . Fitoterapia 2010; 81: 485-489
  • 22 Jeong SH, Ryu YB, Curtis-Long MJ, Ryu HW, Baek YS, Kang JE, Lee WS, Park KH. Tyrosinase inhibitory polyphenols from roots of Morus ihou . J Agric Food Chem 2009; 57: 1195-1203
  • 23 Zhang LB, Ji J, Lei C, Wang HY, Zhao QS, Hou AJ. Isoprenylated flavonoid and adipogenesis-promoting constituents of Dodonaea viscosa . J Nat Prod 2012; 75: 699-706
  • 24 Zhang X, Hu X, Hou A, Wang H. Inhibitory effect of 2,4,2′,4′-tetrahydroxy-3-(3-methyl-2-butenyl)-chalcone on tyrosinase activity and melanin biosynthesis. Biol Pharm Bull 2009; 32: 86-90
  • 25 Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004; 47: 1739-1749
  • 26 Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 2006; 49: 6177-6196
  • 27 Clarkson C, Maharaj VJ, Crouch NR, Grace WM, Pillay P, Matsabisa MG, Bhagwandin N, Smith PJ, Folb PI. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol 2004; 92: 177-191
  • 28 Veerapur VP, Prabhakar KR, Kandadi MR, Srinivasan KK, Unnikrishnan MK. Antidiabetic effect of Dodonaea viscosa aerial parts in high fat diet and low dose streptozotocin-induced type 2 diabetic rats: a mechanistic approach. Pharm Biol 2010; 48: 1137-1148
  • 29 Arun M, Asha VV. Gastroprotective effect of Dodonaea viscosa on various experimental ulcer models. J Ethnopharmacol 2008; 118: 460-465
  • 30 Pirzada AJ, Shaikh W, Usmanghani K, Mohiuddin E. Antifungal activity of Dodonaea viscosa jacq extract on pathogenic fungi isolated from super ficial skin infection. Pak J Pharm Sci 2010; 23: 337-340
  • 31 Teffo LS, Aderogba MA, Eloff JN. Antibacterial and antioxidant activities of four kaempferol methyl ethers isolated from Dodonaea viscosa Jacq. var. angustifolia leaf extracts. S Afr J Bot 2010; 76: 25-29
  • 32 Cao SG, Brodie P, Callmander M, Randrianaivo R, Razafitsalama J, Rakotobe E, Rasamison VE, TenDyke K, Shen YC, Suh EM, Kingston DGI. Antiproliferative triterpenoid saponins of Dodonaea viscosa from the Madagascar dry forest. J Nat Prod 2009; 72: 1705-1707
  • 33 Hearing VJ, Tsukamoto K. Enzymatic control of pigmentation in mammals. FASEB J 1991; 5: 2902-2909
  • 34 del Marmol V, Beermann F. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett 1996; 381: 165-168
  • 35 Gaggioli C, Busca R, Abbe P, Ortonne JP, Ballotti R. Microphthalmia-associated transcription factor (MITF) is required but is not sufficient to induce the expression of melanogenic genes. Pigment Cell Res 2003; 16: 374-382
  • 36 Abdel-Malek Z, Swope VB, Suzuki I, Akcali C, Harriger MD, Boyce ST, Urabe K, Hearing VJ. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc Natl Acad Sci USA 1995; 92: 1789-1793
  • 37 Newton RA, Cook AL, Roberts DW, Leonard JH, Sturm RA. Post-transcriptional regulation of melanin biosynthetic enzymes by cAMP and resveratrol in human melanocytes. J Invest Dermatol 2007; 127: 2216-2227
  • 38 Cheli Y, Ohanna M, Ballotti R, Bertolotto C. Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res 2010; 23: 27-40