Subscribe to RSS
DOI: 10.1055/s-0033-1338573
Overcoming the Inherent Alkylation Selectivity of 2,3-trans-3,4-cis-Trisubstituted Cyclopentanones
Publication History
Received: 23 September 2013
Accepted after revision: 18 November 2013
Publication Date:
10 December 2013 (online)
Abstract
Some ketones, especially 2,3-trans-3,4-cis-trisubstituted cyclopentanones, have strong inherent preferences to react through their less-substituted enolates, with neither kinetic nor thermodynamic conditions being able to selectively functionalize their more-substituted enolate isomers. Herein we report a synthetic strategy to overcome this limitation and selectively access the more-substituted alkylation products of these ketones. The strategy’s key feature is to utilize a MeOCH2O group to temporarily block the more-reactive α position and to direct the ketone to react through its inherently less-reactive enolate isomer. The products formed by this strategy are useful synthetic intermediates on the path to multiple families of natural products.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.
- Supporting Information
-
References
- 1 Carey FA, Sundberg RJ. Advanced Organic Chemistry Part B: Reactions and Synthesis . Kluwer Academic/Plenum Publishers; New York: 2001: 1-47
- 2 House HO, Trost BM. J. Org. Chem. 1965; 30: 1341
- 3a House HO, Gali M, Olmstead HD. J. Org. Chem. 1971; 36: 2361
- 3b House HO, Czuba LJ, Gali M, Olmstead HD. J. Org. Chem. 1969; 34: 2324
- 4 Jin Y, Qiu FG. Org. Biomol. Chem. 2012; 10: 5452
- 5a Oliver SF, Högenauer K, Simic O, Antonello A, Smith MD, Ley SV. Angew. Chem. Int. Ed. 2003; 42: 5996
- 5b Andrews SP, Ball M, Wierschem F, Cleator E, Oliver S, Klemens H, Simic O, Antonello A, Hünger U, Smith MD, Ley SV. Chem. Eur. J. 2007; 13: 5688
- 6 Brendel J, Weyerstahl P. Tetrahedron Lett. 1989; 30: 2371
- 7a Pattenden G, Robertson GM. Tetrahedron 1985; 41: 4001
- 7b Caille JC, Farnier M, Guilard R. Can. J. Chem. 1986; 64: 831
- 8a Iyoda M, Kushida T, Kitami S, Oda M. J. Chem. Soc., Chem. Commun. 1986; 1049
- 8b Tsuda T, Satomi H, Hayaashi T, Saegusa T. J. Org. Chem. 1987; 52: 439
- 8c Majetich G, Song JS, Leigh AJ, Condon SM. J. Org. Chem. 1993; 58: 1030
- 9a Bernady KF, Poletto JF, Nocera J, Mirando P, Schaub RE, Weiss MJ. J. Org. Chem. 1980; 45: 4702
- 9b Taber DF, Raman K, Gaul MD. J. Org. Chem. 1987; 52: 28
- 10 Pogrebnoi S, Sarabèr FC. E, Jansen BJ. M, de Groot A. Tetrahedron 2006; 62: 1743
- 11a Kawai N, Fujibayashi Y, Kuwabara S, Takao K.-I, Ijuin Y, Kobayashi S. Tetrahedron 2000; 56: 6467
- 11b Paquette LA, Lin HS, Belmont DT, Springer JP. J. Org. Chem. 1986; 51: 4807
- 12a Cazeau P, Duboudin F, Moulines F, Babot O, Dunogues J. Tetrahedron 1987; 43: 2075
- 12b Morisson V, Barnier JP, Blanco L. Tetrahedron 1998; 54: 7749
- 12c Solladié-Cavallo A, Jierry L, Bouêrat L, Taillasson P. Tetrahedron: Asymmetry 2001; 12: 883
- 13 Jones S. J. Chem. Soc., Perkin Trans. 1 2002; 1
- 14a Chan J, Jamison TF. J. Am. Chem. Soc. 2004; 34: 10682
- 14b MacMillan JB, Xiong-Zhou G, Skepper CK, Molinski TF. J. Org. Chem. 2008; 73: 3699
- 14c White JD, Bolton GL. J. Am. Chem. Soc. 1990; 112: 1626
- 14d Nicolaou KC, Roecker AJ, Follmann M, Baati R. Angew. Chem. Int. Ed. 2002; 41: 2107
- 15a Boulin B, Arreguy-San Miguel B, Delmond B. Synth. Commun. 2003; 33: 1047
- 15b Brown MD, Whitham GH. J. Chem. Soc., Perkin Trans. 1 1988; 817
- 15c Vedejs E, Fedde CL, Schwartz CE. J. Org. Chem. 1987; 52: 4269
- 16a Wiberg KB, Castejon HC. J. Am. Chem. Soc. 1994; 116: 10489
- 16b Bernasconi CF, Kittredge KW. J. Org. Chem. 1998; 63: 1944