Synlett 2013; 24(12): 1517-1522
DOI: 10.1055/s-0033-1339173
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of CF3-Containing 1,2,3,4-Tetrahydroisoquinoline-3-Phosphonates via Regioselective Ruthenium-Catalyzed Co-cyclotrimerization of 1,7-Aza­diynes

Maria A. Zotova
a   A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia   Fax: +7(499)1355085   Email: osipov@ineos.ac.ru
,
Daria V. Vorobyeva
a   A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia   Fax: +7(499)1355085   Email: osipov@ineos.ac.ru
,
Pierre H. Dixneuf
b   Centre of Catalysis and Green Chemistry, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
,
Christian Bruneau
b   Centre of Catalysis and Green Chemistry, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
,
Sergey N. Osipov*
a   A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia   Fax: +7(499)1355085   Email: osipov@ineos.ac.ru
› Author Affiliations
Further Information

Publication History

Received: 04 April 2013

Accepted after revision: 07 May 2013

Publication Date:
17 June 2013 (online)


Abstract

An efficient access to novel trifluoromethyl-substituted phosphonate analogues of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (TIC) derivatives based on regioselective ruthenium-­catalyzed co-cyclotrimerization of functionalized 1,7-diynes with various alkynes has been developed using RuClCp*cod and pre­ferably Grubbs second-generation catalysts.

Supporting Information

 
  • References and Notes

  • 4 Smith AB. III, Yager KM, Taylor CM. J. Am. Chem. Soc. 1995; 117: 10879
  • 5 Hirschmann R, Smith AB. III, Taylor CM, Benkovic PA, Taylor SD, Yager KM, Sprengeler PA, Benkovic SJ. Science 1994; 265: 234
  • 7 Reddy SS, Sankar AU. R, Raju CN, Rao VK. S. Afr. J. Chem. 2008; 61: 97
  • 8 Maier L, Diel PJ. Phosphorus Sulfur Silicon Relat. Elem. 1991; 57: 57
  • 9 Gavras I, Vlahakos D, Melby JC, Gavras H. J. Clin. Pharm. 1984; 24: 343
  • 10 Asaoka T, Yazawa K, Mikami Y, Takahashi K. J. Antibiot. 1982; 35: 1708
  • 11 Francois G, Bringmann G, Phillipson JD, Boyd MR, Assi LA, Schneider C, Timperman G. US 5,639,761, 1994
    • 12a Otake K, Azukizawa S, Fukui M, Kunishiro K, Kamemoto H, Kanda M, Miike T, Kasai M, Shirahase H. Bioorg. Med. Chem. 2012; 20: 1060
    • 12b Vendeville S, Goossens F, Debreu-Fontaine MA, Landry V, Davioud-Charvet E, Grellier P, Scharpe S, Sergheraert G. Bioorg. Med. Chem. 2002; 10: 1719
    • 12c Matter H, Schudok M, Schwab W, Thorwart W, Barbier D, Billen G, Haase B, Neises B, Weithmann KU, Wollmann T. Bioorg. Med. Chem. 2002; 10: 3529
    • 12d Zhang Y, Feng J, Jia Y, Wang X, Zhang L, Liu C, Fang H, Xu W. J. Med. Chem. 2011; 54: 2823
  • 13 Wang A, U’Prichard DC, Marder VJ. US 0061885 A1, 2002
    • 14a Balboni G, Fiorini S, Baldisserotto A, Trapella C, Sasaki Y, Ambo A, Marczak ED, Lazarus LH, Salvadori S. J. Med. Chem. 2008; 51: 5109
    • 14b Ballet S, Feytens D, De Wachter R, De Vlaeminck M, Marczak ED, Salvadori S, de Graaf C, Rognan D, Negri L, Lattanzi R, Lazarus LH, Tourwé D, Balboni G. Bioorg. Med. Chem. Lett. 2009; 19: 433
  • 15 Markina NA, Mancuso R, Neuenswander B, Lushington GH, Larock RC. ACS Comb. Sci. 2011; 13: 265
  • 18 Shchetnikov GT, Osipov SN, Bruneau C, Dixneuf PH. Synlett 2008; 578
  • 19 Zotova MA, Vasilyeva TP, Peregudov AS, Osipov SN. J. Fluorine Chem. 2012; 135: 33

    • Related access to nonfluorinated TIC-derivatives:
    • 20a Kotha S, Sreenivasachary N. Eur. J. Org. Chem. 2001; 3375
    • 20b Kotha S, Banerjee S. Synthesis 2007; 1015
    • 23a Peters J.-U, Blechert S. Chem. Commun. 1997; 1983
    • 23b Witulski B, Stengel T, Fernández-Hernández JM. Chem. Commun. 2000; 1965
  • 24 Typical Procedure for Compound 6 A degased solution of dyine-containing aminophosphonate (0.39 mmol), alkyne (1.55 mmol, 4 equiv), and Grubbs II catalyst (0.02 mmol, 5 mol%) in dry CH2Cl2 (8 mL) was stirred under heating at 60 °C for 3 h. After cooling to r.t., the solvent was removed under reduced pressure, and the crude product was purified by column chromatography on silica gel (eluent: CH2Cl2–EtOAc) to afford the product. Selected Data for Compound 6b 1H NMR (300 MHz, CDCl3): δ = 0.98 (t, J = 7.3 Hz, 3 H, CH3), 1.07 (t, J = 7.1 Hz, 3 H, CH3), 1.17 (t, J = 6.5 Hz, 3 H, CH3), 1.32–1.45 (m, 2 H, CH2), 1.61–1.71 (m, 2 H, CH2), 2.68 (t, J = 7.6 Hz, 2 H, CH2), 3.52–3.56 (m, 2 H, CH2), 3.89–4.20 (m, 4 H, OCH2), 4.76 (br s, 2 H, CH2), 5.21 (d, J = 12.2 Hz, 1 H, OCH2), 5.35 (d, J = 12.2 Hz, 1 H, OCH2), 7.08–7.21 (m, 2 H, ArH), 7.32–7.52 (m, 10 H, ArH). 19F NMR (282 MHz, CDCl3): δ = 9.81 (s, 3 F, CF3). 31P NMR (161 MHz, CDCl3): δ = 16.63 (q, J = 3.3 Hz). 13C NMR (151 MHz, CDCl3): δ = 13.9, 15.8 (d, J = 6.6 Hz), 16.2 (d, J = 5.5 Hz), 22.4, 33.6, 35.3, 43.4, 47.3, 62.7 (d, J = 8.8 Hz), 64.0 (m), 64.8 (dq, J = 28.7, 154.8 Hz), 67.9, 124.7, 125.9 (qd, J = 12.8, 288.9 Hz), 127.1, 127.2 (d, J = 6.6 Hz), 128.1, 128.2, 128.3, 128.4, 129.2, 129.4, 136.2, 140.2, 140.6, 141.6, 155.7, 171.1. Anal. Calcd for C32H37F3NO5P: C, 63.67; H, 6.18; N, 2.32. Found: C, 63.28; H, 5.88; N, 2.54