Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2013; 45(18): 2525-2532
DOI: 10.1055/s-0033-1339406
DOI: 10.1055/s-0033-1339406
paper
Microwave-Assisted Cascade Cycloaddition for C–N Bond Formation: An Approach to the Construction of 1,4,5,6-Tetrahydropyrimidine and 2-Imidazoline Derivatives
Further Information
Publication History
Received: 15 April 2013
Accepted after revision: 18 June 2013
Publication Date:
24 July 2013 (online)
Abstract
An efficient strategy for the synthesis of various 1,4,5,6-tetrahydropyrimidine and 2-imidazoline derivatives has been reported. The reactions proceeded from nitriles with ethylenediamine or 1,3-diaminopropane via cascade cycloaddition in the presence of CuL2 (L = 2-hydroxy-2-phenylacetate) to afford the corresponding 1,4,5,6-tetrahydropyrimidine or 2-imidazoline derivatives under reflux conditions or microwave irradiation in excellent yields.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.
- Supporting Information
-
References
- 1a Roh J, Vávrová K, Hrabálek A. Eur. J. Org. Chem. 2012; 6101
- 1b Wang C, Li S, Liu H, Jiang Y, Fu H. J. Org. Chem. 2010; 75: 7936
- 1c Xu W, Fu H. J. Org. Chem. 2011; 76: 3846
- 1d Patil SS, Mhaske PC, Patil SV, Bobade VD. J. Heterocycl. Chem. 2011; 48: 652
- 1e Suzuki N, Itoh S, Poon K, Masutani C, Hanaoka F, Ohmori H, Yoshizawa I, Shibutani S. Biochemistry 2004; 43: 6304
- 2a Dunbar PG, Durant GJ, Fang Z, Abuh YF, El-Assadi AA, Ngur DO, Periyasamy S, Hoss WP, Messer WS. J. Med. Chem. 1993; 36: 842
- 2b Messer WS. J, Abuh YF, Ryan K, Shepherd MA, Schroeder M, Abunada S, Sehgal R, El-Assadi AA. Drug. Dev. Res. 1997; 40: 171
- 2c Dolinkin AO, Chernov’yants MS. Pharm. Chem. J. 2010; 44: 99
- 3a Zhou SM, Kern ER, Gullen E, Cheng YC, Drach JC, Matsumi S, Mitsuya H, Zemlicka J. J. Med. Chem. 2004; 47: 6964
- 3b Linger C, Azadi P, Macleod JK, Dell A, Abdallah MA. Tetrahedron Lett. 1992; 33: 1737
- 3c Donkor IO, Clark AM. Eur. J. Med. Chem. 1999; 34: 639
- 3d Garcia MB, Grilli S, Lunazzi L, Mazzanti A, Orelli LR. J. Org. Chem. 2001; 66: 6679
- 4a Li HY, Drummond S, DeLucca I, Boswell GA. Tetrahedron 1996; 52: 11153
- 4b Sun M, Wu XQ, Chen JQ, Cai J, Cao M, Ji M. Eur. J. Med. Chem. 2010; 45: 2299
- 4c Sztanke K, Pasternak K, Sidor-Wójtowicz A, Truchlińska J, Jóźwiak K. Bioorg. Med. Chem. 2006; 14: 3635
- 5a Forsberg JH, Spaziano VT, Balasubramanian TM, Liu GK, Kinsley SA, Duckworth CA, Poteruca JJ, Brown PS, Miller JL. J. Org. Chem. 1987; 52: 1017
- 5b Hill AJ, Johnston JV. J. Am. Chem. Soc. 1954; 76: 922
- 5c Ghorai MK, Das K, Kumar A, Das A. Tetrahedron Lett. 2006; 47: 5393
- 5d Levesque G, Gressier JC, Proust M. Synthesis 1981; 963
- 5e Papadopoulos EP, George B. J. Org. Chem. 1977; 42: 2530
- 5f Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Eskandari Z. Z. Naturforsch. 2010; 65: 461
- 5g Takahashi S, Togo H. Heterocycles 2010; 82: 593
- 6a Paliakov E, Elleboe T, Boykin DW. Synthesis 2007; 1475
- 6b Koteswara Rao V, Hari Babu B, Raveendra Babu K, Srinivasulu D, Naga Raju C. Synth. Commun. 2012; 42: 3368
- 6c Vorbrueggen H, Krolikiewicz K. Tetrahedron Lett. 1981; 22: 4471
- 6d Pews RG. Heterocycles 1988; 27: 1867
- 6e Hegedüs A, Vígh I, Hell Z. Heteroat. Chem. 2004; 15: 428
- 6f Aleksandrov AA, El’chaninov MM. Russ. J. Appl. Chem. 2009; 82: 2161
- 6g Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Eskandari Z. J. Heterocycl. Chem. 2011; 48: 479
- 7a Prasad BA. B, Bisai A, Singh VK. Org. Lett. 2004; 6: 4829
- 7b Prasad BA. B, Pandey G, Singh VK. Tetrahedron Lett. 2004; 45: 1137
- 7c Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Eskandari Z, Salavati H. J. Iran. Chem. Soc. 2011; 8: S17
- 8a Chen Y, Wang Y, Sun Z, Ma D. Org. Lett. 2008; 10: 625
- 8b Chen Y, Xie G, Ma D. J. Org. Chem. 2007; 72: 9329
- 8c Liu F, Ma D. J. Org. Chem. 2007; 72: 4844
- 8d Martin R, Cuenca A, Buchwald SL. Org. Lett. 2007; 9: 5521
- 9a Nordmann G, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 4978
- 9b Viirre RD, Evindar G, Batey RA. J. Org. Chem. 2008; 73: 3452
- 10a Shen G, Lv X, Bao W. Eur. J. Org. Chem. 2009; 5897
- 10b Murru S, Ghosh H, Sahoo SK, Patel BK. Org. Lett. 2009; 11: 4254
- 10c Zhao Q, Li L, Fang Y, Sun D, Li C. J. Org. Chem. 2009; 74: 459
- 10d You W, Yan X, Liao Q, Xi C. Org. Lett. 2010; 12: 3930
- 11a Li X, Zhou B, Zhang J, She M, An S, Ge H, Li C, Yin B, Li J, Shi Z. Eur. J. Org. Chem. 2012; 1626
- 11b Zhang J, Wang X, Yang M, Wan K, Yin B, Wang Y, Li J, Shi Z. Tetrahedron Lett. 2011; 52: 1578
- 12a Wang F, Cai S, Liao Q, Xi C. J. Org. Chem. 2011; 76: 3174
- 12b Paraskar AS, Dewkar GK, Sudalai A. Tetrahedron Lett. 2003; 44: 3305
- 12c Cortes-Salva M, Garvin C, Antilla JC. J. Org. Chem. 2011; 76: 1456
- 12d Lu J, Fu H. J. Org. Chem. 2011; 76: 4600
- 12e Li CL, Zhang XG, Tang RY, Zhong P, Li JH. J. Org. Chem. 2010; 75: 7037
- 13a Kappe CO, Pieber B, Dallinger D. Angew. Chem. Int. Ed. 2012; 51: 2
- 13b Kappe CO. Angew. Chem. Int. Ed. 2004; 43: 6250 ; Angew. Chem. 2004, 116, 6408
- 13c Nüchter M, Ondruschka B, Bonrath W, Gum A. Green Chem. 2004; 6: 128
- 14 Parr RG, Yang W. Density Functional Theory of Atoms and Molecules. Oxford University Press; New York: 1989
- 15a Becke AD. J. Chem. Phys. 1993; 98: 5648
- 15b Lee C, Yang W, Parr RG. Phys. Rev. B: Condens. Matter Mater. Phys. 1988; 37: 785
- 16 Schaefer A, Horn H, Ahlrichs R. J. Chem. Phys. 1992; 97: 2571
- 17 Schaefer A, Huber C, Ahlrichs R. J. Chem. Phys. 1994; 100: 582
- 18 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM. W, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03. Gaussian Inc; Pittsburgh: 2003
- 19a Qi D, Zhang L, Wan L, Zhang Y, Bian Y, Jiang J. Phys. Chem. Chem. Phys. 2011; 13: 13277
- 19b Qi D, Zhang L, Zhao L, Cai X, Jiang J. ChemPhysChem 2012; 13: 2046
- 20a Reed AE, Curtiss LA, Weinhold F. Chem. Rev. 1988; 88: 899
- 20b Yin B, Huang Y.-H, Wang G, Wang Y. J. Mol. Model. 2010; 16: 437
- 20c Yin B, Wang G, Sa N.-Y, Huang Y.-H. J. Mol. Model. 2008; 14: 789
- 21 CCDC-921864 (for CuL2) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.
- 22 Imoto M, Iwanami T, Akabane M, Tani Y. JP 2001302643, 2001
For recent one-pot reactions based on C–N bond formation:
For recent reactions based on C–O bond formation:
For recent reactions based on C–S bond formation: