Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(16): 2095-2101
DOI: 10.1055/s-0033-1339657
DOI: 10.1055/s-0033-1339657
letter
Efficient C-7 or C-3/C-7 Direct Arylation of Tri- or Disubstituted Imidazo[1,2-b]pyrazoles
Further Information
Publication History
Received: 24 June 2013
Accepted after revision: 24 July 2013
Publication Date:
28 August 2013 (online)
Abstract
A novel and efficient method of C-7 direct arylation of the imidazo[1,2-b]pyrazole core, never described to date, is presented in this paper. Series of electron-rich or electron-poor aryl and heteroaryl groups were easily introduced. The corresponding products were obtained in moderate to excellent yields thanks to this pallado-catalyzed and microwave-assisted process. A one-pot double C-3 and C-7 direct coupling is also reported.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Baviskar AT, Madaan C, Preet R, Mohapatra P, Jain V, Agarwal A, Guchhait SK, Kundu CN, Banerjee UC, Bharatam PV. J. J. Med. Chem. 2011; 54: 5013
- 1b Zhang J, Singh R, Goff D, Kinoshita T. U.S. Patent US20100316649(A1), 2010 ; Chem. Abstr. 2010, 154, 64825
- 1c Keshi O, Bahar I, Jernigan RL, Beutler JA, Shoemaker RH, Sansville EA, Covell DG. Anti-Cancer Drugs 2000; 15: 79
- 1d Kinnamon KE, Engle RR, Poon BT, Ellis WY, MacCall JW, Pzimianski MT. Proc. Soc. Exp. Biol. Med. 2000; 224: 45
- 2a Abdelhamid AO, Abdelall EK. A, Zakic YH. J. Heterocycl. Chem. 2010; 47: 477
- 2b Li M, Zhao G, Wen L, Cao W, Zhang S, Yang H. J. Heterocycl. Chem. 2005; 42: 209
- 2c Chen YF, Huang NY, Ding MW. Chin. J. Chem. 2004; 24: 1413
- 3 Terada A, Wachi K, Myazawa H, Lizuka Y, Hagesawa K, Tabata K. (Sankyo Co) Jpn. Patent 07278148, 1995 ; Chem. Abstr. 1996, 124, 8700
- 4a Bhatia G, Graczyk P, Khan A, Medland DP, Numata H, Oinuma H, Palmer V. Int. Patent WO02081475A1, 2002 ; Chem. Abstr. 2002, 137, 310918
- 4b Vanotti E, Fiorentini F, Villa M. J. Heterocycl. Chem. 1994; 31: 737
- 5a Rahmati A, Eskandari-Vashareh M, Alizadeh-Kouzehrash M. Tetrahedron 2013; 69: 4199
- 5b Rahmati A, Alizadeh-Kouzehrash M. Synthesis 2011; 2913
- 5c Shawali AS, Mosseelhi MA, Altablawy FM. A, Farghaly TA. F, Tawfik NM. Tetrahedron 2008; 64: 5524
- 5d Barsy MA, El-Rady EA. J. Heterocycl. Chem. 2006; 43: 523
- 5e Ming L, Guilong Z, Lirong W, Huazheng Y. Synth. Commun. 2005; 35: 493
- 5f Shawali AS, Abdelkader MH, Eltalbawy FM. A. Tetrahedron 2002; 58: 2875
- 5g Langer P, Wuckelt J, Döring M, Schreiner PR, Görls H. Eur. J. Org. Chem. 2001; 2257
- 5h Seneci P, Nicola M, Inglesi M, Vanotti E, Resnati G. Synth. Commun. 1999; 29: 311
- 5i Cho N, Kubo K, Furuya S, Sugiura Y, Yasuma T, Kohara Y, Ojima M, Inada Y, Nishikawa K, Naka T. Bioorg. Med. Chem. Lett. 1994; 4: 35
- 5j Hammouha HA, El-Barbary AA, Sharaf MA. F. J. Heterocycl. Chem. 1984; 21: 945
- 5k Wood SG, Dalley NK, George RD, Robins RK, Revankar GR. J. Org. Chem. 1984; 49: 3534
- 5l Hiroshi K, Masaaki H, Toshihiko O. Chem. Pharm. Bull. 1974; 22: 482
- 6 Grosse S, Pillard C, Massip S, Léger JM, Jarry C, Bourg S, Bernard P, Guillaumet G. Chem. Eur. J. 2012; 18: 14943
- 7a Bassoude I, Berteina-Raboin S, Massip S, Leger JM, Jarry C, Essassi EM, Guillaumet G. Eur. J. Org. Chem. 2012; 2572
- 7b El Akkaoui A, Berteina-Raboin S, Mouaddib A, Guillaumet G. Eur. J. Org. Chem. 2010; 862
- 7c Koubachi J, El Kazzouli S, Berteina-Raboin S, Mouaddib A, Guillaumet G. J. Org. Chem. 2007; 72: 7650
- 7d Koubachi J, El Kazzouli S, Berteina-Raboin S, Mouaddib A, Guillaumet G. Synlett 2006; 3237
-
8a Ackermann L. Chem. Commun. 2010; 46: 4866
- 8b Fisch-Meister C, Doucet H. Green Chem. 2011; 13: 741
- 8c Roger J, Gottumukkala AL, Doucet H. ChemCatChem 2010; 2: 20
-
8d Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem. Eur. J. 2010; 16: 2654
- 8e Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
- 8f Daugulis O, Do HQ, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
- 8g McGlacken GP, Bateman LM. Chem. Soc. Rev. 2009; 38: 2447
- 8h Bellina F, Rossi R. Tetrahedron 2009; 65: 10269
- 8i Li BJ, Yang SD, Shi ZJ. Synlett 2008; 949
-
8j Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
-
8k Seregin IV, Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
- 8l Campeau LC, Stuart DR, Fagnou K. Aldrichimica Acta 2007; 40: 35
- 8m Catellani M, Motti E, Della Ca’ N, Ferracioli R. Eur. J. Org. Chem. 2007; 4153
- 8n Satoh T, Miura M. Chem. Lett. 2007; 36: 200
- 9a See ref 7.
- 9b Fu HY, Chen L, Doucet H. J. Org. Chem. 2012; 77: 4473
- 9c Beladhriaa A, Beydounb K, Ammar HB, Salemc RB, Doucet H. Synthesis 2011; 2553
- 9d Basolo L, Beccalli EM, Borsini E, Broggini G. Tetrahedron 2009; 65: 3486
- 9e Basolo L, Beccalli EM, Borsini E, Broggini G, Pellegrino S. Tetrahedron 2008; 64: 8182
- 9f Li W, Nelson DP, Jensen MS, Hoerrner RS, Javadi GJ, Cai D, Larsen RD. Org. Lett. 2003; 5: 4835
- 10a Liégault B, Lapointe D, Caron L, Vlassova A, Fagnou K. J. Org. Chem. 2009; 74: 1826
- 10b Lafrance M, Fagnou K. J. Am. Chem. Soc. 2006; 128: 16496
- 11a See Ref 8e.
- 11b Daugulis O. Chem. Heterocycl. Compd. 2012; 48: 21
- 11c Ackermann L, Vicente R, Borna R. Adv. Synth. Catal. 2008; 350: 741
- 11d Campeau LC, Parisien M, Jean A, Fagnou K. J. Am. Chem. Soc. 2006; 128: 581
- 12a Théveau L, Querolle O, Dupas G, Hoarau C. Tetrahedron 2013; 69: 4375
- 12b Verrier C, Lassalas P, Théveau L, Quéguiner G, Trécourt F, Marsais F, Hoarau C. Beilstein J. Org. Chem. 2011; 7: 1584
- 12c Bellina F, Rossi R. Adv. Synth. Catal. 2010; 352: 1223
- 12d Balcells D, Clot E, Eisenstein O. Chem. Rev. 2010; 110: 749
- 12e Fagnou K. Top. Curr. Chem. 2010; 292: 35
- 12f Bellina F, Cautericcio S, Rossi R. Curr. Org. Chem. 2008; 12: 774
-
12g Seregin IV, Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
- 13 Pivalic acid and potassium acetate should enhance the reactivity in the case of a CMD mechanism but in our case no improvement in the conversion was observed (Table 1, entry 4). See: Lafrance M, Fagnou K. J. Am. Chem. Soc. 2006; 128: 16496
- 14 Iodide poisoning effect of catalyst is known to inhibit CMD reactivity. A low conversion of 10% is noted using 4-iodotoluene (Table 1, entry 16). Consequently the CMD mechanism may not be excluded. See ref. 11d.
- 15 General Procedure A; C-7 Direct Arylation of the Imidazo[1,2-b]pyrazoles 1–5: A microwave vial containing a stirring bar was loaded with imidazo[1,2-b]pyrazole 1–5 in 1,4-dioxane, (hetero)aryl bromide or chloride (2.0 equiv), tricyclohexylphosphine tetrafluoroborate (0.20 equiv) and cesium carbonate (2.0 equiv). The tube was evacuated and backfilled with dry argon twice. Palladium acetate (0.10 equiv) was added and the mixture was submitted to microwave irradiation with stirring at 160 °C for 4 h. It was then cooled to r.t., and 1,4-dioxane was removed under reduced pressure. The residue was purified by flash chromatography to provide the desired products 1a–5b. 2-(4-Methoxyphenyl)-1-methyl-6-phenyl-3-(4-tolyl)-7-[4-(trifluoromethyl)phenyl]-1H-imidazo[1,2-b]pyrazole (1b): The reaction was carried out as described in general procedure A using imidazo[1,2-b]pyrazole 1 (100 mg, 0.254 mmol), palladium acetate (5.7 mg, 0.0254 mmol), tricyclohexylphosphine tetrafluoroborate (18.7 mg, 0.0508 mmol), cesium carbonate (142 mg, 0.508 mmol) and 4-bromobenzotrifluoride (114 mg, 72 μL, 0.508 mmol) in 1,4-dioxane (2 mL). Standard workup followed by flash chromatography (CH2Cl2–petroleum ether, 1:1) yielded 1b as a pale yellow solid (123 mg, 90%); mp 226–228 °C. 1H NMR (400 MHz, CDCl3): δ = 7.71 (d, J = 8.1 Hz, 2 H, HAr), 7.58 (d, J = 8.4 Hz, 2 H, HAr), 7.53 (d, J = 7.9 Hz, 2 H, HAr), 7.47 (d, J = 8.1 Hz, 2 H, HAr), 7.33 (d, J = 8.5 Hz, 2 H, HAr), 7.25–7.29 (m, 3 H, HAr), 7.12 (d, J = 8.1 Hz, 2 H, HAr), 7.00 (d, J = 8.5 Hz, 2 H, HAr), 3.88 (s, 3 H, OMe), 3.30 (s, 3 H, NMe), 2.32 (s, 3 H, Me). 13C NMR (101 MHz, CDCl3): δ = 160.31 (Cq), 152.26 (Cq), 140.07 (Cq), 137.17 (Cq), 136.82 (Cq), 134.27 (Cq), 132.46 (CHAr), 130.97 (CHAr), 129.19 (Cq), 129.03 (CHAr), 128.87 (CHAr), 128.18 (CHAr), 127.87 (2 J C–F = 33.0 Hz, Cq), 127.42 (CHAr), 127.14 (CHAr), 125.63 (Cq), 125.14 (3 J C–F = 3.72 Hz, CHAr), 124.41 (1 J C–F = 273 Hz, Cq), 121.13 (Cq), 118.42 (Cq), 114.64 (CHAr), 94.33 (Cq), 55.34 (OMe), 31.73 (NMe), 21.29 (Me). IR (neat): 1603, 1322, 1118, 1066, 838, 697 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C33H27F3N3O: 538.21007; found: 538.21007. HRMS (ESI): m/z [M + Na]+ calcd for C33H27F3N3O: 560.19202; found: 560.19113. General Procedure B; One-Pot C-3 and C-7 Direct Arylation of Imidazo[1,2-b]pyrazole 6: A microwave vial containing a stirring bar was loaded with imidazo[1,2-b]pyrazole 6 in 1,4-dioxane, (hetero)aryl bromide (3.0 equiv), tricyclohexylphosphine tetrafluoroborate (0.20 equiv) and cesium carbonate (4.0 equiv). The tube was evacuated and back-filled with dry argon twice. Palladium acetate (0.10 equiv) was added and the mixture was submitted to microwave irradiation with stirring at 160 °C for 4 h. It was then cooled to r.t., and 1,4-dioxane was removed under reduced pressure. The residue was purified by flash chromatography to provide the desired products 1a, 6a and 6b. 2-(4-Methoxyphenyl)-1-methyl-6-phenyl-3,7-bis[4-(trifluoromethyl)phenyl]-1H-imidazo[1,2-b]pyrazole (6a): The reaction was carried out as described in general procedure B using imidazo[1,2-b]pyrazole 6 (100 mg, 0.329 mmol), palladium acetate (8.04 mg, 0.0329 mmol), tricyclohexylphosphine tetrafluoroborate (24.0 mg, 0.0658 mmol), caesium carbonate (369 mg, 1.32 mmol) and 4-bromobenzotrifluoride (222 mg, 138 μL, 0.987 mmol) in 1,4-dioxane (2 mL). Standard workup followed by flash chromatography (CH2Cl2–petroleum ether, 3:7) yielded 6a as a white solid (151 mg, 78%); mp 220–222 °C. 1H NMR (400 MHz, CDCl3): δ = 8.01 (d, J = 8.4 Hz, 2 H, HAr), 7.47–7.64 (m, 8 H, HAr), 7.29–7.41 (m, 5 H, HAr), 7.07 (d, J = 8.4 Hz, 2 H, HAr), 3.92 (s, 3 H, OMe), 3.33 (s, 3 H, NCH3). 13C NMR (101 MHz, CDCl3): δ = 160.76 (Cq), 152.49 (Cq), 140.08 (Cq), 136.81 (Cq), 133.96 (Cq), 132.34 (CHAr), 132.28 (Cq), 131.09 (Cq), 131.05 (CHAr), 128.78 (CHAr), 128.37 (2 J C–F = 32.6 Hz, Cq), 128.27 (CHAr), 128.20 (2 J C–F = 32.8 Hz, Cq), 127.64 (CHAr), 126.73 (CHAr), 125.25 (3 J C–F = 3.70 Hz, 2 × CHAr), 124.36 (1 J C–F = 273 Hz, Cq), 124.18 (1 J C–F = 273 Hz, Cq), 120.39 (Cq), 117.03 (Cq), 114.99 (CHAr), 94.65 (Cq), 55.39 (OMe), 31.74 (NMe). IR (neat): 1613, 1320, 1249, 1162, 1103, 1076, 1064, 1016, 834 cm–1. HRMS (ESI): m/z [M + H] calcd for C33H24F6N3O: 592.18181; found: 592.18163.
For selected recent reviews on direct C–H arylation, see:
For reviews providing mechanistic discussions on palladium(0)-catalyzed direct C–H coupling, see: