Synlett 2013; 24(20): 2730-2734
DOI: 10.1055/s-0033-1339892
letter
© Georg Thieme Verlag Stuttgart · New York

A Palladium-Catalyzed Domino Reaction as Key Step for the Synthesis of Functionalized Aromatic Amino Acids

Tina Stark
a   Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany   Fax: +49(69)79829464   Email: m.goebel@chemie.uni-frankfurt.de
,
Marcel Suhartono
a   Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany   Fax: +49(69)79829464   Email: m.goebel@chemie.uni-frankfurt.de
b   Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada   Fax: +1(416)9468185   Email: mlautens@chem.utoronto.ca
,
Michael W. Göbel*
a   Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany   Fax: +49(69)79829464   Email: m.goebel@chemie.uni-frankfurt.de
,
Mark Lautens*
b   Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada   Fax: +1(416)9468185   Email: mlautens@chem.utoronto.ca
› Author Affiliations
Further Information

Publication History

Received: 30 June 2013

Accepted after revision: 04 September 2013

Publication Date:
24 October 2013 (online)


Abstract

A variety of substituted aromatic systems are synthesized by the Catellani reaction. These are used as precursors for novel amino acids with a basic side chain.

Supporting Information

 
  • References and Notes

    • 2a Krebs A, Ludwig V, Pfizer J, Dürner G, Göbel MW. Chem. Eur. J. 2004; 10: 544
    • 2b Suhartono M, Weidlich M, Stein T, Karas M, Dürner G, Göbel MW. Eur. J. Org. Chem. 2008; 1608
    • 2c Suhartono M, Schneider AE, Dürner G, Göbel MW. Synthesis 2010; 293
  • 6 Bonnaventure I, Charette AB. J. Org. Chem. 2008; 73: 6330
  • 7 Mitsudo K, Thansandote P, Wilhelm T, Mariampillai B, Lautens M. Org. Lett. 2006; 8: 3939
  • 8 Coleman RS, Mortensen MA. Tetrahedron Lett. 2003; 44: 1215
  • 9 Blanchot M, Candito DA, Larnaud F, Lautens M. Org. Lett. 2011; 13: 1486
  • 10 Catellani Reaction; General Procedure: Pd(OAc)2 (45 mg, 0.2 mmol) and Ph3P (115 mg, 0.44 mmol) were placed into an oven-dried sealable tube and dissolved in anhydrous MeCN (12 mL) under an argon atmosphere. After 5 min, Cs2CO3 (3.26 g, 10 mmol), the aryl iodide or triflate 1g (2 mmol), 1,3-dibromopropane (2.04 mL, 20 mmol; for iodobenzene (1a): 2.24 mL, 22 mmol) and methyl acrylate (906 μL, 10 mmol) were added. The reaction mixture was purged with argon for 5 min. After addition of norbornene (942 mg, 10 mmol), the tube was sealed and heated at 90 °C for 18 h. For workup, the cooled reaction mixture was filtered over Celite, washed with CH2Cl2, concentrated in vacuo and purified by column chromatography. Methyl (2E)-3-[2,6-Bis(3-bromopropyl)phenyl]prop-2-enoate (2a): Yield: 544 mg (67%); yellow oil. 1H NMR (250 MHz, CDCl3): δ = 7.87 (d, J = 16.3 Hz, 1 H, Ar-CH=CH), 7.21 (m, 1 H, Ar-H), 7.12 (m, 2 H, Ar-H), 6.03 (d, J = 16.3 Hz, 1 H, Ar-CH=CH), 3.83 (s, 3 H, COOCH3), 3.38 (t, J = 6.5 Hz, 4 H, CH2Br), 2.79 (t, J = 7.3 Hz, 4 H, CH 2CH2CH2Br), 2.07 (m, 4 H, CH 2CH2Br). 13C NMR (63 MHz, CDCl3): δ = 166.5, 143.2, 139.0, 134.2, 128.4, 127.7, 124.8, 51.8, 33.6, 33.0, 32.0. IR (neat): 2949 (m), 1722 (s), 1641 (m), 1576 (w), 1456 (m), 1434 (m), 1309 (m), 1272 (m), 1195 (m), 1169 (s), 1038 (w), 984 (m), 866 (w), 793 (w), 764 (m). Rf = 0.70 (n-hexane–EtOAc, 3:1). HRMS (MALDI): m/z [M + H]+ calcd for C16H21Br2O2: 402.9903; found: 402.9900. Methyl (2E)-3-[2-(3-Bromopropyl)pyren-1-yl]prop-2-enoate (2i): Yield: 562 mg (69%); yellow solid; mp 121–124 °C; Rf = 0.60 (n-hexane–EtOAc, 3:1). 1H NMR (250 MHz, CDCl3): δ = 8.43 (d, J = 16.3 Hz, 1 H, Ar-CH=CH), 8.33 (d, J = 9.5 Hz, 1 H, Ar-H), 8.18 (d, J = 7.5 Hz, 2 H, Ar-H), 8.10–7.97 (m, 5 H, Ar-H), 6.38 (d, J = 16.3 Hz, 1 H, Ar-CH=CH), 3.93 (s, 3 H, COOCH3), 3.48 (t, J = 6.5 Hz, 2 H, CH2Br), 3.25 (t, J = 7.3 Hz, 2 H, CH 2CH2CH2Br), 2.31 (m, 2 H, CH 2CH2Br). 13C NMR (63 MHz, CDCl3): δ = 166.8, 142.8, 136.6, 131.4, 131.1, 130.5, 129.5, 129.2, 128.3, 128.2, 127.0, 126.3, 126.0, 125.8, 125.6, 125.3, 124.6, 124.4, 123.7, 51.9, 34.0, 33.0, 32.6. IR (KBr): 2927 (m), 2857 (w), 1721 (s), 1638 (m), 1596 (w), 1437 (m), 1285 (s), 1200 (m), 1171 (s), 988 (m), 884 (m), 842 (s), 763 (m), 713 (m), 671 (w), 604 (w). Anal. Calcd for C23H19BrO2: C, 67.82; H, 4.70. Found: C, 67.56; H, 4.76. See the Supporting Information for details of the other compounds.
  • 11 Evans DA, Britton TC, Ellman JA, Dorow RL. J. Am. Chem. Soc. 1990; 112: 4011
  • 12 Evans DA, Britton TC. J. Am. Chem. Soc. 1987; 109: 6881
  • 13 See the Supporting Information for further details.
  • 14 Höfler C, Rüchardt C. Liebigs Ann. 1996; 188
  • 15 Basallote MG, Besora M, Castillo CE, Fernández-Trujillo MJ, Lledόs A, Maseras F, Máñez MA. J. Am. Chem. Soc. 2007; 129: 6608