Synlett 2014; 25(3): 443-447
DOI: 10.1055/s-0033-1340461
letter
© Georg Thieme Verlag Stuttgart · New York

Ligand-Free Copper-Catalyzed Cross-Coupling Reaction of Alkynes with Aryl Iodides and Vinyl Halides

Wan-Ting Tsai
Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, R. O. C.   Fax: +886(4)22862547   Email: cfalee@dragon.nchu.edu.tw
,
Yun-Yung Lin
Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, R. O. C.   Fax: +886(4)22862547   Email: cfalee@dragon.nchu.edu.tw
,
Yi-An Chen
Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, R. O. C.   Fax: +886(4)22862547   Email: cfalee@dragon.nchu.edu.tw
,
Chin-Fa Lee*
Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, R. O. C.   Fax: +886(4)22862547   Email: cfalee@dragon.nchu.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 12 August 2013

Accepted after revision: 17 November 2013

Publication Date:
19 December 2013 (online)


Abstract

A copper-catalyzed cross-coupling reaction of alkynes with aryl iodides is described. The system tolerates a broad range of functional groups and enables the sterically demanding substrates presented during the catalysis with only 5–10 mol% of Cu2O as the catalyst.

Supporting Information

 
  • References and Notes

  • 2 Sonogashira K In Handbook of Organopalladium Chemistry for Organic Synthesis . Negishi E. Wiley-Interscience; New York: 2002: 493-529
  • 5 Okuro K, Furuune M, Enna M, Miura M, Nomura M. J. Org. Chem. 1993; 58: 4716
  • 6 Gujadhur RK, Bates CG, Venkataraman D. Org. Lett. 2001; 3: 4315
  • 7 Saejueng P, Bates CG, Venkataraman D. Synthesis 2005; 1706
  • 8 Ma D, Liu F. Chem. Commun. 2004; 1934
  • 9 Wang YF, Deng W, Liu L, Guo QX. Chin. Chem. Lett. 2005; 16: 1197
  • 10 Li J.-H, Li J.-L, Wang D.-P, Pi S.-F, Xie Y.-X, Zhang M.-B, Hu X.-C. J. Org. Chem. 2007; 72: 2053
  • 11 Xie Y.-X, Deng C.-L, Pi S.-F, Li J.-H, Yin D.-L. Chin. J. Chem. 2006; 24: 1290
  • 12 Monnier F, Turtaut F, Duroure L, Taillefer M. Org. Lett. 2008; 10: 3203
  • 13 Zuidema E, Bolm C. Chem. Eur. J. 2010; 16: 4181
  • 15 Mao J, Xie G, Wu M, Guo J, Jia S. Adv. Synth. Catal. 2008; 350: 2477
  • 16 Thathagar MB, Beckers J, Rothenberg G. Green Chem. 2004; 6: 215
  • 17 Biffis A, Scattolin E, Ravasio N, Zaccheria F. Tetrahedron Lett. 2007; 48: 8761
  • 18 Yuan Y, Zhu H, Zhao D, Zhang L. Synthesis 2011; 1792
  • 19 Gonda Z, Tolnai GL, Novák Z. Chem. Eur. J. 2010; 16: 11822
  • 20 Zou L.-H, Johansson AJ, Zuidema E, Bolm C. Chem. Eur. J. 2013; 19: 8144
  • 21 Li T, Qu X, Xie G, Mao J. Chem. Asian J. 2011; 6: 1325
  • 23 ICP-MS analysis showed 2 ppb of palladium in Cu2O; no palladium has been detected in Cs2CO3 and phenylacetylene.
  • 24 General Procedure for the Synthesis of Compounds 3a–e A sealable vial equipped with a magnetic stir bar was charged with Cs2CO3 (652 mg, 2.0 mmol) and Cu2O (7.0 mg, 0.05 mmol) under a nitrogen atmosphere. The aperture of the vial was then covered with a rubber septum. Under a nitrogen atmosphere, aryl alkyne 1 (1.5 mmol), aryl iodide 2 (1.0 mmol), and DMF (0.5 mL) were added by syringe. The septum was then replaced by a screw cap containing a Teflon-coated septum, and the reaction vessel was placed at 135 °C. After stirring at this temperature for 24 h, the heterogeneous mixture was cooled to r.t. and diluted with EtOAc (20 mL). The resulting solution was filtered through a pad of silica gel, then washed with EtOAc (20 mL), and concentrated to give the crude material which was then purified by column chromatography on silica gel to yield alkyne 3. Data for Five Representative Examples Diphenylacetylene (3a)25 Following the general procedure, using Cs2CO3 (652 mg, 2.0 mmol) and Cu2O (7.0 mg, 0.05 mmol) in DMF (0.5 mL), then purified by column chromatography (SiO2, hexane) to provide 3a as a white solid (168 mg, 94% yield); mp 58–59 °C (lit.25 60–61 °C). 1H NMR (400 MHz, CDCl3): δ = 7.26–7.41 (m, 6 H), 7.56–7.60 (m, 4 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 89.4, 123.2, 128.2, 128.3, 131.6 ppm. Phenyl-p-tolylacetylene (3b)25 Following the general procedure, using phenylacetylene (0.0167 mL, 1.5 mmol) and 4-iodotoluene (218 mg, 1.0 mmol), then purified by column chromatography (SiO2, hexane) to provide 3b as a white solid (181 mg, 94% yield); mp 69–70 °C (lit.25 71–72.5 °C). 1H NMR (400 MHz, CDCl3): δ = 2.17 (s, 3 H), 6.96–6.97 (m, 1 H), 6.14–6.16 (m, 2 H), 7.28–7.38 (m, 2 H), 7.37–7.39 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 21.5, 88.7, 89.5, 120.1, 123.4, 128.0, 128.3, 129.1, 131.5, 131.5, 138.4 ppm. 4-(Phenylethynyl)aniline (3c)19c Following the general procedure, using phenylacetylene (0.167 mL, 1.5 mmol) and 4-iodoaniline (218 mg, 1.0 mmol), then purified by column chromatography (SiO2, hexane–EtOAc = 9:1) provide 3c as a brown solid (166 mg, 86% yield); mp 123–124 °C (lit.19c 126–127 °C). 1H NMR (400 MHz, CDCl3): δ = 3.75 (br s, 2 H), 6.57 (d, J = 8.0 Hz, 2 H), 7.28–7.33 (m, 5 H), 7.48–7.50 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 87.3, 90.1, 112.5, 114.7, 123.8, 127.6, 128.2, 131.3, 132.9, 146.6 ppm. (4-Methoxyphenyl)phenylacetylene (3d)25 Following the general procedure, using phenylacetylene (0.083 mL, 0.75 mmol) and 4-iodoanisole (120 mg, 0.5 mmol), then purified by column chromatography (SiO2, hexane–EtOAc = 10:1) to provide 3d as a white solid (92 mg, 88% yield); mp 55–57 °C (lit.25 58–60 °C). 1H NMR (400 MHz, CDCl3): δ = 3.75 (s, 3 H), 6.83–6.85 (m, 2 H), 7.28–7.31 (m, 3 H), 7.44–7.52 (m, 4 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 55.1, 88.0, 89.4, 113.9, 115.3, 123.5, 127.9, 128.2, 131.4, 133.0, 159.6 ppm. 2-(Phenylethynyl)anisole (3e)19c Following the general procedure, using phenylacetylene (0.167 mL, 1.5 mmol) and 2-iodoanisole (0.130 mL, 1.0 mmol), then purified by column chromatography (SiO2, hexane–EtOAc = 9:1) to provide 3e as a yellow oil (132 mg, 64% yield). 1H NMR (400 MHz, CDCl3): δ = 3.86 (s, 3 H), 6.84–6.93 (m, 2 H), 7.24–7.33 (m, 4 H), 7.48–7.50 (m, 1 H), 7.54–7.57 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 55.7, 85.7, 93.3, 110.6, 112.3, 120.4, 123.5, 128.0, 128.2, 129.7, 131.5, 133.5, 159.9 ppm.
  • 25 Li P, Wang L, Li H. Tetrahedron 2005; 61: 8633