Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(4): 574-578
DOI: 10.1055/s-0033-1340622
DOI: 10.1055/s-0033-1340622
letter
From Diketopiperazines to Hydantoins: An Unprecedented Rearrangement
Further Information
Publication History
Received: 08 November 2013
Accepted after revision: 15 December 2013
Publication Date:
29 January 2014 (online)
Abstract
Bis-Boc-activated 2,5-diketopiperazines on reaction with potassium hydroxide or sodium methoxide in dry tetrahydrofuran led to Boc-protected hydantoins through an unprecedented ring contraction. This rearrangement was applied to several monosubstituted 2,5-diketopiperazines with good yields and regioselectivity.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1 Borthwick AD. Chem. Rev. 2012; 112: 3641
- 2 González JF, Ortín I, de la Cuesta E, Menéndez JC. Chem. Soc. Rev. 2012; 41: 6902
- 3 Ware E. Chem. Rev. 1950; 46: 403
- 4 Schafmeister CE, Brown ZZ, Gupta S. Acc. Chem. Res. 2008; 41: 1387
- 5 Liu X, Walsh CT. Biochemistry (Moscow) 2009; 48: 11032
- 6 López-Rodríguez ML, Morcillo MJ, Fernández E, Benhamú B, Tejada I, Ayala D, Viso A, Campillo M, Pardo L, Delgado M, Manzanares J, Fuentes JA. J. Med. Chem. 2005; 48: 2548
- 7 Royo M, Van Den Nest W, del Fresno M, Frieden A, Yahalom D, Rosenblatt M, Chorev M, Albericio F. Tetrahedron Lett. 2001; 42: 7387
- 8 Welsch ME, Snyder SA, Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 347
- 9 Mendgen T, Steuer C, Klein CD. J. Med. Chem. 2012; 55: 743
- 10 Wamhoff H, Kleimann W. J. Chem. Soc., Chem. Commun. 1981; 743
- 11 Kaneti J, Kirby AJ, Koedjikov AH, Pojarlieff IG. Org. Biomol. Chem. 2004; 2: 1098
- 12 Meusel M, Ambrożak A, Hecker TK, Gütschow M. J. Org. Chem. 2003; 68: 4684
- 13 Farran D, Parrot I, Martinez J, Dewynter G. Angew. Chem. Int. Ed. 2007; 46: 7488
- 14 Coursindel T, Restouin A, Dewynter G, Martinez J, Collette Y, Parrot I. Bioorg. Chem. 2010; 38: 210
- 15 Farran D, Parrot I, Toupet L, Martinez J, Dewynter G. Org. Biomol. Chem. 2008; 6: 3989
- 16 Coursindel T, Martinez J, Parrot I. Eur. J. Org. Chem. 2011; 4519
- 17 Chaubet G, Coursindel T, Morelli X, Betzi S, Roche P, Guari Y, Lebrun A, Toupet L, Collette Y, Parrot I, Martinez J. Org. Biomol. Chem. 2013; 11: 4719
- 18 Farran D, Echalier D, Martinez J, Dewynter G. J. Pept. Sci. 2009; 15: 474
- 19 Satoh N, Akiba T, Yokoshima S, Fukuyama T. Angew. Chem. Int. Ed. 2007; 46: 5734
- 20 Yeung Hong S, Corey EJ. J. Am. Chem. Soc. 2006; 128: 6310
- 21 Flynn DL, Zelle RE, Grieco PA. J. Org. Chem. 1983; 48: 2424
- 22 Burk MJ, Allen JG. J. Org. Chem. 1997; 62: 7054
- 23 General Experimental Procedure for the Synthesis of Hydantoins To a solution of Boc-activated DKP (1.0 equiv) in anhydrous THF (c 0.4 mol L–1) under argon atmosphere was added KOH or MeONa powder (1.6 equiv) at –15 °C. The reaction mixture was stirred for 1 h at –15 °C and then 5 h at 25 °C. The suspension was then diluted with EtOAc and acidified with 1.0 M HCl solution. The organic layer was then washed with sat. NaHCO3 solution allowing the recovery of the starting DKP. The aqueous layer was acidified using 1.0 M HCl solution and then extracted three times with EtOAc. After drying over Na2SO4 and filtration, the solvent was removed under vacuum. The crude material was then purified according to the method described for each compound. All reactions were performed on a 0.2 mmol scale. Scaling up to 5.6 mmol, in each case, gave reproducible results.
- 24 Preparation of (S)-8 Compound (S)-8 was prepared according to the general procedure for the synthesis of hydantoins starting from bis-Boc cyclo[Gly-Val] 1. The crude reaction mixture was purified using method B (0% to 100% B in 25 min) yielding hydantoin 2a in 62% yield as a colorless oil. 1H NMR (600 MHz, DMSO-d 6): δ = 0.83 [d, 3 H, J = 6.9 Hz, HCH(CH3)2], 1.09 [d, 3 H, J = 7.1 Hz, HCH(CH3)2], 1.48 [s, 9 H, HC(CH3)3], 2.40 [m, 1 H, HCH(CH3)2], 4.06 [d, 1 H, J = 17.5 Hz, HNCH2COOH], 4.15 [d, 1 H, J = 17.4 Hz, HNCH2COOH], 4.45 (d, 1 H, J = 3.2 Hz, HCH*CO). 13C NMR (150 MHz, DMSO-d 6): δ = 15.7 [CCH(CH3)2], 17.8 [CCH(CH3)2], 27.5 [CC(CH3)3], 29.1 [C CH(CH3)2], 40.0 (CNCH2COOH), 63.8 (C CH*CO), 83.1 [C C(CH3)3], 148.1 (C COBoc), 151.6 (CNCON), 168.0 (CNCOCH*), 169.4 (CNCH2COOH). HPLC: t R = 1.60 min. Chiral HPLC: t R = 6.97 min. ESI-MS+: m/z = 301.1. HRMS (TOF ES MS+): m/z calcd for [C13H20N2O6 + Na+]: 323.1219; found: 323.1220. [α]D 20 +17.6 (c 1.40, MeOH).
- 25 Ohmoto K, Yamamoto T, Okuma M, Horiuchi T, Imanishi H, Odagaki Y, Kawabata K, Sekioka T, Hirota Y, Matsuoka S, Nakai H, Toda M, Cheronis JC, Spruce LW, Gyorkos A, Wieczorek M. J. Med. Chem. 2001; 44: 1268
- 26 Preparation of 9 Compound 9 was prepared according to the general procedure for the synthesis of hydantoins starting from bis-Boc cyclo[Gly-d-Val] and using freshly prepared NaOMe. The crude reaction mixture was purified using method B (0% to 100% B in 25 min), yielding 9 in 71% as a colorless oil. 1H NMR (600 MHz, CDCl3): δ = 0.94 [d, 3 H, J = 7.0 Hz, HCH(CH3)2], 1.20 [d, 3 H, J = 7.1 Hz, HCH(CH3)2], 1.54 [s, 9 H, HC(CH3)3], 2.52 [dsept, 1 H, J = 3.4, 7.1 Hz, HCH(CH3)2], 3.74 (s, 3 H, HCO2CH3), 4.22 (d, 1 H, J = 17.3 Hz, HNCH2CO2CH3), 4.26 (d, 1 H, J = 17.3 Hz, HNCH2CO2CH3), 4.38 (d, 1 H, J = 3.4 Hz, HCH*CO). 13C NMR (150 MHz, CDCl3): δ = 16.0 [CCH(CH3)2], 18.3 [CCH(CH3)2], 28.2 [CC(CH3)3], 30.2 [C CH(CH3)2], 39.5 (CNCH2CO2CH3), 53.0 (CCO2CH3), 64.7 (C CH*CO), 84.9 [C C(CH3)3], 148.8 (C COBoc), 152.1 (CNCON), 167.1 (CNCOCH*), 169.7 (C CO2CH3). HPLC: t R = 2.05 min. Chiral HPLC: t R = 17.97 min. ESI-MS+: m/z = 337.2 [M + Na]+. HRMS (TOF ES MS+): m/z calcd for [C14H22N2O6 + Na]+: 337.1376; found: 337.1375. [α]D 20 +11.8 (c 0.30, MeOH).
- 27 Preparation of (5S)-10 Compound (5S)-10 was prepared according to the general procedure for the synthesis of hydantoins starting from bis-Boc cyclo[Gly-Ile]. The crude reaction mixture was purified using method B (30% to 75% B in 10 min) yielding hydantoin (5S)-10 in 62% yield as a colorless oil. 1H NMR (600 MHz, CDCl3): δ = 0.87 (d, 3 H, J = 6.9 Hz, HCH*CH3), 1.00 (t, 3 H, J = 7.4 Hz, HCH2CH3), 1.55 [s, 9 H, HC(CH3)3], 1.55–1.72 (m, 2 H, HCH2CH3), 2.25 (m, 1 H, HCH*CH3), 4.23 (d, 1 H, J = 17.4 Hz, HNCH2COOH), 4.30 (d, 1 H, J = 17.4 Hz, HNCH2COOH), 4.49 (d, 1 H, J = 3.0 Hz, HCH*CO), 8.41 (br s, 1 H, HNCH2COOH ). 13C NMR (150 MHz, CDCl3): δ = 12.1 (CCH2CH3), 13.2 (CCH*CH3), 25.5 (C CH2CH3), 28.1 [CC(CH3)3], 36.6 (C CH*CH3), 39.2 (CNCH2COOH), 63.2 (C CH*CO), 84.9 [C C(CH3)3], 148.7 (C COBoc), 152.1 (CNCON), 169.5 (CNCOCH*), 171.2 (CNCH2COOH). HPLC: t R = 2.03 min. Chiral HPLC: t R = 7.49 min. ESI-MS+: m/z = 337.1 [Na+ adduct]. HRMS (TOF ES MS+): m/z calcd for [C14H22N2O6 + Na+]: 337.1376; found: 337.1375. [α]D 20 +9.1 (c 3.00, MeOH).
- 28 Allinger NL, Zalkow V. J. Org. Chem. 1960; 25: 701
- 29 Liwo A, Ciarkowski J. Tetrahedron Lett. 1985; 26: 1873
- 30 Kopple KD, Marr DH. J. Am. Chem. Soc. 1967; 89: 6193
- 31 Watanabe H, Yoshimura T, Kawakami S, Sasamori T, Tokitoh N, Kawabata T. Chem. Commun. 2012; 48: 5346