Synlett 2014; 25(07): 987-990
DOI: 10.1055/s-0033-1340953
letter
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Organocatalytic Cyclopropanation on Chiral Menthyl Acrylate for the Synthesis of (–)-trans-2-Aminomethylcyclopropanecarboxylic Acid [(–)-TAMP]

Yuka Sugeno
Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan   Fax: +81(45)7872403   Email: moikawa@yokohama-cu.ac.jp
,
Yuichi Ishikawa
Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan   Fax: +81(45)7872403   Email: moikawa@yokohama-cu.ac.jp
,
Masato Oikawa*
Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan   Fax: +81(45)7872403   Email: moikawa@yokohama-cu.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 29 January 2014

Accepted after revision: 17 February 2014

Publication Date:
14 March 2014 (online)


Abstract

An enantioselective synthesis of (–)-trans-2-aminomethylcyclopropanecarboxylic acid [(–)-TAMP], a partial agonist for GABAc receptor, has been achieved as the hydrochloride salt in 3.9% overall yield for total eight steps from l-menthol. The synthesis features double asymmetric cyclopropanation that employs cinchona alkaloid derived organocatalyst and l-menthyl chiral auxiliary.

 
  • References and Notes

  • 1 Reichelt A, Martin SF. Acc. Chem. Res. 2006; 39: 433
    • 2a Doyle MP, Protopopova MN. Tetrahedron 1998; 54: 7919
    • 2b Lebel H, Marcoux J.-F, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
    • 2c Pellissier H. Tetrahedron 2008; 64: 7041
    • 2d Nicolas I, Le Maux P, Simonneaux G. Coord. Chem. Rev. 2008; 252: 727
    • 2e Concellon JM, Rodriguez-Solla H, Concellon C, del Amo V. Chem. Soc. Rev. 2010; 39: 4103
    • 2f Chen DY. K, Pouwer RH, Richard J.-A. Chem. Soc. Rev. 2012; 41: 4631
  • 3 Duke RK, Chebib M, Balcar VJ, Allan RD, Mewett KN, Johnston GA. R. J. Neurochem. 2000; 75: 2602
    • 4a Allan RD, Curtis DR, Headley PM, Johnston GA. R, Lodge D, Twitchin B. J. Neurochem. 1980; 34: 652
    • 4b Kusama T, Spivak CE, Whiting P, Dawson VL, Schaeffer JC, Uhl GR. Br. J. Pharmacol. 1993; 109: 200
    • 4c Kusama T, Wang T.-L, Guggino WB, Cutting GR, Uhl GR. Eur. J. Pharmacol. Mol. Pharmacol. 1993; 245: 83
    • 4d Duke RK, Allan RD, Chebib M, Greenwood JR, Johnston GA. R. Tetrahedron: Asymmetry 1998; 9: 2533
    • 4e Aitken DJ, Bull SD, Davies IR, Drouin L, Ollivier J, Peed J. Synlett 2010; 2729
    • 4f Levandovskiy IA, Sharapa DI, Shamota TV, Rodionov VN, Shubina TE. Future Med. Chem. 2011; 3: 223
    • 4g Nakada K, Yoshikawa M, Ide S, Suemasa A, Kawamura S, Kobayashi T, Masuda E, Ito Y, Hayakawa W, Katayama T, Yamada S, Arisawa M, Minami M, Shuto S. Bioorg. Med. Chem. 2013; 21: 4938
  • 5 Sukopp M, Schwab R, Marinelli L, Biron E, Heller M, Várkondi E, Pap Á, Novellino E, Kéri G, Kessler H. J. Med. Chem. 2005; 48: 2916
  • 6 Papageorgiou CD, Cubillo de Dios MA, Ley SV, Gaunt MJ. Angew. Chem. Int. Ed. 2004; 43: 4641
  • 7 To a stirred solution of quinidine derivative 5 (585 mg, 1.73 mmol) and Cs2CO3 (3.38 g, 10.4 mmol) in MeCN (20 mL) were added a solution of tert-butyl bromoacetate (1.26 mL, 8.65 mmol) and l-menthyl acrylate (2, 2.00 g, 9.51 mmol) in MeCN (15 mL). After stirring at 80 °C for 24 h, the reaction mixture was poured into CH2Cl2 (20 mL) and washed with sat. aq NH4Cl (20 mL). The aqueous layer was extracted with CH2Cl2 (3 × 20 mL). The combined organic layer was washed with brine (20 mL), dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (70 g, Et2O–hexane = 1:9) to give cyclopropane 3 (1.20 g, 42%) as a colorless oil. Unreacted acrylate 2 was also recovered (1.13 g, 57%). Diastereomeric purity of 3 was determined to be 50% de from chiral HPLC analysis (CHIRALPAK ID-3, 0.46 × 25 cm, H2O– MeCN = 40:60). Spectroscopic Data for Cyclopropane 3 (50% de) [α]D 23.2 –83.8 (c 2.43, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 4.64 (ddd, J = 12.0, 12.0, 4.4 Hz, 1 H), 2.05–2.01 (m, 2 H), 1.93 (m, 1 H), 1.82 (m, 1 H), 1.62 (m, 2 H), 1.43 (m, 1 H), 1.40 (s, 9 H), 1.36–1.26 (m, 3 H), 1.02–0.90 (m, 2 H), 0.86–0.84 (m, 7 H), 0.72–0.70 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 171.6, 171.0, 128.4, 81.3, 47.0, 40.9, 34.3, 31.4, 28.1 (3×), 26.3, 23.4, 23.2, 22.3, 22.1, 20.9, 16.4, 15.4.

    • For recent examples, see:
    • 8a Chen M, Roush WR. J. Am. Chem. Soc. 2012; 134: 10947
    • 8b Huang L, Zhang Y, Staples RJ, Huang RH, Wulff WD. Chem. Eur. J. 2012; 18: 5302
  • 9 Sui X, Zhu R, Li G, Ma X, Gu Z. J. Am. Chem. Soc. 2013; 135: 9318
  • 10 Mitsunobu O. Synthesis 1981; 1
  • 11 Spectroscopic Data for Phthalimide 9 [α]D 23.5 –131.4 (c 0.04, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.91–7.81 (m, 2 H), 7.73–7.69 (m, 2 H), 4.56 (ddd, J = 10.8, 10.8, 4.4 Hz, 1 H), 3.61 (d, J = 4.0 Hz, 2 H), 1.92 (br, 1 H), 1.78 (m, 1 H), 1.71–1.56 (m, 5 H), 1.41 (br, 1 H), 1.28–1.16 (m, 2 H), 0.99–0.89 (m, 3 H), 0.85 (d, J = 6.4 Hz, 3 H), 0.69 (d, J = 6.8 Hz, 3 H), 0.56 (d, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 172.9, 168.2 (2×), 134.1 (2×), 132.1 (2×), 123.4 (2×), 74.5, 47.0, 40.9, 40.6 34.3, 31.4, 26.4, 23.6, 22.1, 21.2, 20.6, 19.7, 16.4, 13.9.
  • 12 A suspension of 11 (48.8 mg, 0.138 mmol) in HCl (6 M, 0.200 mL) was stirred at 60 °C for 15 h. The reaction mixture was then concentrated under reduced pressure. The residue was purified by column chromatography on reversed-phase silica gel (500 mg, H2O) to give HCl salt of (–)-TAMP (1, 20.9 mg, quant.) as a colorless solid: [α]D 22.0 –65.4 (c 0.15, 1 M HCl). 1H NMR (400 MHz, D2O): δ = 2.98 (dd, J = 12.0, 8.0 Hz, 1 H), 2.87 (dd, J = 12.0, 8.0 Hz, 1 H), 1.68–1.60 (m, 2 H), 1.23 (m, 1 H), 1.02 (m, 1 H). 13C NMR (100 MHz, D2O): δ = 181.6, 42.8, 21.9, 17.4, 12.2.

    • For our related studies, see:
    • 13a Oikawa M, Sasaki S, Sakai M, Sakai R. Tetrahedron Lett. 2011; 52: 4402
    • 13b Oikawa M, Sasaki S, Sakai M, Ishikawa Y, Sakai R. Eur. J. Org. Chem. 2012; 5789
    • 13c Oikawa M, Sugeno Y, Ishikawa Y, Tukada H. Synlett 2013; 24: 886
    • 13d Sakai M, Ishikawa Y, Takamizawa S, Oikawa M. Tetrahedron Lett. 2013; 54: 5911