Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(08): 1089-1092
DOI: 10.1055/s-0033-1340977
DOI: 10.1055/s-0033-1340977
letter
A Concise Organocatalytic Route to Protected (2S,4R)-4-Hydroxyornithine and (+)-Pseudohygroline
Further Information
Publication History
Received: 27 December 2013
Accepted after revision: 19 February 2014
Publication Date:
14 March 2014 (online)
Abstract
A practical, efficient, and organocatalytic approach to the synthesis of (2S,4R)-4-hydroxyornithine and (+)-pseudohygroline is reported using proline-catalyzed sequential α-aminoxylation/α-amination reaction and Horner–Wadsworth–Emmons olefination reaction of an aldehyde as the key step.
Key words
aldehydes - amination - amino alcohols - Wittig reaction - cyclization - enantioselectivitySupporting Information
- for this article is available online at http://www.thiemeconnect.com/ejournals/toc/synlett. Included are experimental procedures and spectral data for compounds 7–15.
- Supporting Information
-
References and Notes
- 1a Shibahara S, Kondo S, Maeda K, Umezawa H, Ohno M. J. Am. Chem. Soc. 1972; 94: 4353
- 1b Kozikowski AP, Chen Y.-Y. J. Org. Chem. 1981; 46: 5248
- 1c Wang Y.-F, Izawa T, Kobayashi S, Ohno M. J. Am. Chem. Soc. 1982; 104: 6465
- 1d Hashiguchi S, Kawada A, Natsugari H. J. Chem. Soc., Perkin Trans. 1 1991; 2435
- 1e Knapp S. Chem. Rev. 1995; 95: 1859
- 1f Sakai R, Kamiya H, Murata M, Shimamoto K. J. Am. Chem. Soc. 1997; 119: 4112
- 1g Haight AR, Stuk TL, Allen MS, Bhagavatula L, Fitzgerald M, Hannick SM, Kerdesky FA. J, Menzia JA, Parekh SI, Robbins TA, Scarpetti D, Tien J.-H. J. Org. Process Res. Dev. 1999; 3: 94
- 1h Sham HL, Zhao C, Li L, Betebenner DA, Saldivar A, Vasavanonda S, Kempf DJ, Plattner JJ, Norbeck DW. Bioorg. Med. Chem. Lett. 2002; 12: 3101
- 2 For excellent review on use of chiral 1,3-amino alcohol in asymmetric organic synthesis, see: Lait SM, Rankic DA, Keay BA. Chem. Rev. 2007; 107: 767
- 3a Yadav JS, Jayasudhan Reddy Y, Adi Narayana Reddy P, Subba Reddy BV. Org. Lett. 2013; 15: 546
- 3b Lee JS, Kim D, Lozano L, Kong SB, Han H. Org. Lett. 2013; 15: 554 ; and references cited therein
- 4a Sulser H, Stute R. Experientia 1976; 32: 422
- 4b Rozan P, Kuo Y.-H, Lambein F. Phytochemistry 2001; 58: 281
- 5a Bell EA, Tirimanna AS. L. Biochem. J. 1964; 356
- 5b Hatanaka S, Kaneko S, Saito K, Ishida Y. Phytochemistry 1981; 20: 2291
- 6 Denning DW. J. Antimicrob. Chemother. 1997; 40: 611
- 7 Kondo S, Meguriya N, Mogi H, Aota T, Miura K, Fujii T, Hayashi I, Makino K, Yamamoto M, Nakajima N. J. Antibiot. 1980; 33: 533
- 8a Pruess DL, Kellett M. J. Antibiot. 1983; 36: 208
- 8b Evans RH. Jr, Ax H, Jacoby A, Williams TH, Jenkis E, Scannell JP. J. Antibiot. 1983; 36: 213
- 8c Muller J.-C, Toome V, Pruess DL, Blount JF, Weigele M. J. Antibiot. 1983; 36: 217
- 8d Shiro Y, Kato K, Fujii M, Idab Y, Akitaa H. Tetrahedron 2006; 62: 8687 ; and references cited therein
- 9 Ezaki M, Iwami M, Yamashita M, Hashimoto S, Komori T, Umehara K, Mine Y, Kohsaka M, Aoki H, Imanaka I. J. Antibiot. 1985; 38: 1453
- 10a Lampe T, Adelt I, Beyer D, Brunner N, Endermann R, Ehlert K, Kroll H.-P, von Nussbaum F, Raddatz S, Rudolph J, Schiffer G, Schumacher A, Cancho-Grande Y, Michels M, Weigand S. WO 2003106480, 2003 ; Chem. Abstr. 2004, 140, 59934.
- 10b Lampe T, Adelt I, Beyer D, Brunner N, Endermann R, Ehlert K, Kroll H.-P, von Nussbaum F, Raddatz S, Rudolph J, Schiffer G, Schumacher A ; Chem. Abstr. 2004, 140, 164239.
- 11a Platonava TF. Kuzovkov A. D. 1963; 17: 19
- 11b Fitzgerald JS. Aust. J. Chem. 1965; 18: 589
- 11c Martin SA, Rovirosa J, Gambaro V, Castillo M. Phytochemistry 1980; 19: 2007
- 11d Pomilio AB, Gonzalez MD, Eceizabarren CS. Phytochemistry 1996; 41: 1393
- 12a Talbot G, Gaudry R, Berlinguet L. Can. J. Chem. 1956; 34: 911
- 12b Mizusaki K, Makisumi S. Bull. Chem. Soc. Jpn. 1981; 54: 470
- 12c Jackson RF. W, Wood A, Wythes MJ. Synlett 1990; 735
- 12d Häusler J. Liebigs Ann. Chem. 1992; 1231
- 12e Jackson RF. W, Rettie AB, Wood A, Wythes MJ. J. Chem. Soc., Perkin Trans. 1 1994; 1719
- 12f Girard A, Greck C, Genet JP. Tetrahedron Lett. 1998; 39: 4259
- 12g Mues H, Kazmaier U. Synthesis 2001; 487
- 12h Rudolph J, Hannig F, Theis H, Wischnat R. Org. Lett. 2001; 3: 3153
- 12i Lepine R, Carbonnelle A.-C, Zhu J. Synlett 2003; 1455
- 12j Paintner FF, Allmendinger L, Bauschke G, Klemann P. Org. Lett. 2005; 7: 1423
- 12k Pandey SK, Pandey M, Kumar P. Tetrahedron Lett. 2008; 49: 3297
- 13a Bhat C, Tilve SG. Tetrahedron Lett. 2011; 52: 6566
- 13b Yadav JS, Narasimhulu G, Reddy NM, Reddy BV. S. Tetrahedron Lett. 2010; 51: 1574
- 13c Davies SG, Fletcher AM, Roberts PM, Smith AD. Tetrahedron 2009; 65: 10192
- 13d Knight DW, Salter R. Tetrahedron Lett. 1999; 40: 5915
- 13e Louis C, Hootele C. Tetrahedron: Asymmetry 1997; 8: 109
- 13f Takahata H, Kubota M, Momose T. Tetrahedron: Asymmetry 1997; 8: 2801
- 13g Enierga G, Hockless DC. R, Perlmutter P, Rose M, Sjoberg S, Wong K. Tetrahedron Lett. 1998; 39: 2813
- 13h Murahashi S.-I, Imada Y, Kohno M, Kawakami T. Synlett 1993; 395
- 14a Dalko PL, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
- 14b Berkessel A, Gröger H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis. Wiley–VCH; Weinheim: 2005
- 14c Seayed J, List B. Org. Biomol. Chem. 2005; 3: 719
- 15 MacMillan DW. C. Nature (London) 2008; 455: 304
- 16 Jha V, Kondekar NB, Kumar P. Org. Lett. 2010; 12: 2762
- 17a Kumar P, Dwivedi N. Acc. Chem. Res. 2013; 46: 289
- 17b Kauloorkar SV, Jha V, Kumar P. RSC Adv. 2013; 3: 18288
- 17c Kumar P, Jha V, Gonnade RG. J. Org. Chem. 2013; 78: 11756
- 17d Jha V, Kumar P. RSC Adv. 2014; 4: 3238
- 18a Fernandes RA, Kumar P. Tetrahedron Lett. 2000; 41: 10309
- 18b Naidu SV, Kumar P. Tetrahedron Lett. 2003; 44: 1035
- 18c Kandula SV, Kumar P. Tetrahedron Lett. 2003; 44: 1957
- 18d Kondekar NB, Kandula SV, Kumar P. Tetrahedron Lett. 2004; 45: 5477
- 18e Pandey SK, Kandula SV, Kumar P. Tetrahedron Lett. 2004; 45: 5877
- 19a Zhong G. Angew. Chem. Int. Ed. 2003; 42: 4247
- 19b Chua PJ, Tan B, Zhong G. Green Chem. 2009; 11: 543
- 20a List B. J. Am. Chem. Soc. 2002; 124: 5656
- 20b Kotkar SP, Chavan VB, Sudalai A. Org. Lett. 2007; 9: 1001
- 21 The ee of 7a was determined by derivatizing it with Mosher’s acid and analyzing the 19F NMR spectrum. The ee of 7b was determined by comparing its specific rotation with the literature value.24a The diastereomeric ratios of 10 and 13 were determined using HPLC analysis (see Supporting Information).
- 22 Dibenzyl 1-{(2S,4R)-5-[(tert-Butoxycarbonyl)amino]-4-[(tert-butyldimethylsilyl)oxy]-1-hydroxypentan-2-yl}hydrazine-1,2-dicarboxylate (10) Colorless oil; yield 2.122 g (63%). [α]D 25 –9.56 (c 1.0, CHCl3). IR (CHCl3): νmax = 3019, 2956, 1712, 1505, 1216 cm–1. 1H NMR (200 MHz, CDCl3): δ = 0.00 (s, 3 H), 0.02 (s, 3 H), 0.90 (s, 9 H), 1.45 (s, 9 H), 1.66–1.82 (m, 2 H), 3.24–3.48 (m, 2 H), 3.90–4.15 (m, 3 H), 4.40–4.73 (m,1 H), 5.07–5.34 (m, 4 H), 6.11–6.19 (m, 1 H), 7.22–7.36 (m, 10 H) ppm. 13C NMR (50 MHz, CDCl3): δ = –4.8, –4.7, 17.9, 25.8, 28.6, 31.8, 32.6, 53.3, 62.3, 62.5, 67.9, 71.8, 71.9, 79.7, 126.4, 127.8, 128.1, 128.5, 129.3, 135.3, 135.5, 135.9, 138.1, 138.3, 155.9, 156.5, 158.1, 158.6 ppm. ESI-MS: m/z = 654.43 [M + Na]+. Anal. Calcd (%) for C32H49N3O8Si: C, 60.83; H, 7.82; N, 6.65. Found: C, 60.70; H, 7.91; N, 6.57. Dibenzyl 1-{(4S,6S,E)-6-[(tert-butyldimethylsilyl)oxy]-1-ethoxy-1-oxohept-2-en-4-yl}hydrazine-1,2-dicarboxylate (13) Colorless oil; yield 1.33 g (65%). [α]D 25 +2.32 (c 0.5, CHCl3). IR (CHCl3): νmax = 3295, 2956, 1755, 1719, 1406, 1043 cm–1. 1H NMR (200 MHz, CDCl3): δ = –0.02 (s, 3 H), 0.03 (s, 3 H), 0.85 (s, 9 H), 1.16 (d, J = 6.2 Hz, 3 H), 1.28 (t, J = 7.1 Hz, 2 H), 1.64–1.72 (m, 2 H), 3.76–3.93 (m, 1 H), 4.19 (q, J = 7.1 Hz, 2 H), 4.91–5.15 (m, 5 H), 5.94 (m, 1 H), 6.57 (br s, 1 H), 6.83 (dd, J = 6.8, 15.6 Hz, 1 H), 7.31 (m, 10 H) ppm. 13C NMR (50 MHz, CDCl3): δ = –4.8, –4.1, 14.1, 17.9, 24.1, 29.9, 40.6, 56.5, 60.5, 67.4, 67.7, 68.3, 122.9, 128.0, 128.1, 128.3, 128.4, 135.5, 144.6, 155.3, 156.3, 166.1 ppm. ESI-MS: m/z = 607.32 [M + Na]+. Anal. Calcd (%) for C31H44N2O7Si: C, 63.67; H, 7.58; N, 4.79. Found: C, 63.39; H, 7.43; N, 4.92.
- 23 (2S,4R)-2,5-Bis{(tert-butoxycarbonyl)amino)-4-[(tert-butyldimethylsilyl]oxy}pentanoic Acid (12) Viscous oil; yield 42 mg (82%). [α]D 25 –34.56 (c 1, CHCl3). IR (CHCl3): νmax = 3346, 2910, 1716, 1453 cm–1. 1H NMR (200 MHz, CDCl3): δ = 0.08 (s, 6 H), 0.88 (s, 9 H), 1.45 (s, 18 H), 1.73–1.79 (m, 2 H), 3.07–3.28 (m, 1 H), 3.55–3.80 (m, 1 H), 3.90–4.11 (m, 2 H), 5.59 (br s, 1 H), 5.74 (br s, 1 H) ppm. 13C NMR (50 MHz, CDCl3): δ = –5.1, –4.7, 14.1, 18.0, 22.7, 28.3, 31.9, 42.5, 65.2, 66.4, 80.4, 163.3 ppm. ESI-MS: m/z = 485.21 [M + Na]+. Anal. Calcd (%) for C21H42N2O7Si: C, 54.52; H, 9.15; N, 6.05. Found: C, 54.25; H, 9.37; N, 5.75. (+)-Pseudohygroline (5a) Colorless liquid; yield 0.02 g (95%). [α]D 25 –48.12 (c 0.5, EtOH). 1H NMR (200 MHz, CDCl3): δ = 1.17 (d, J = 6.2 Hz, 3 H), 1.31–1.45 (m, 3 H), 1.71–1.78 (m, 2 H), 1.98–2.04 (m, 1 H), 2.31–2.40 (m, 1 H), 2.37 (s, 3 H), 2.69–2.77 (m, 1 H), 3.00–3.08 (m, 1 H), 3.87–3.96 (m, 1 H) ppm. 13C NMR (50 MHz, CDCl3): δ = 21.9, 22.8, 29.1, 38.1, 40.6, 56.5, 67.1, 68.2 ppm. ESI-MS: m/z = 144.22 [M + H]+.
For recent synthesis of 1,3-amino alcohol, see