Synlett 2014; 25(08): 1178-1180
DOI: 10.1055/s-0033-1341047
letter
© Georg Thieme Verlag Stuttgart · New York

Silver-Catalyzed Efficient Synthesis of Vinylene Carbonate Derivatives from Carbon Dioxide

Rie Ugajin
Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan   Fax: +81(45)5661716   Email: yamada@chem.keio.ac.jp
,
Satoshi Kikuchi
Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan   Fax: +81(45)5661716   Email: yamada@chem.keio.ac.jp
,
Tohru Yamada*
Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan   Fax: +81(45)5661716   Email: yamada@chem.keio.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 23 January 2014

Accepted after revision: 28 February 2014

Publication Date:
27 March 2014 (online)


Abstract

It was found that the silver salt and base was an efficient catalytic system for the reaction of the secondary propargylic alcohol with carbon dioxide to afford various corresponding vinylene carbonate derivatives in good to high yields under mild conditions.

Supporting Information

 
  • References and Notes

    • 1a Yamada W, Sugawara Y, Cheng H.-M, Ikeno T, Yamada T. Eur. J. Org. Chem. 2007; 2604
    • 1b Yoshida S, Fukui K, Kikuchi K, Yamada T. J. Am. Chem. Soc. 2010; 132: 4072
    • 1c Yoshida S, Fukui K, Kikuchi S, Yamada T. Chem. Lett. 2009; 38: 786
    • 1d Kikuchi S, Sekine K, Ishida T, Yamada T. Angew. Chem. Int. Ed. 2012; 51: 6989
    • 1e Ishida T, Kikuchi S, Tsubo T, Yamada T. Org. Lett. 2013; 15: 848
    • 1f Ishida T, Kikuchi S, Yamada T. Org. Lett. 2013; 15: 3710
  • 2 Kikuchi S, Yoshida S, Sugawara Y, Yamada W, Cheng H.-M, Fukui K, Sekine K, Iwakura I, Ikeno T, Yamada T. Bull. Chem. Soc. Jpn. 2011; 84: 698
    • 3a Carini DJ, Ardecky RJ, Ensinger CL, Pruitt RR, Wexler PC, Wong S.-M, Huang BJ, Aungst JR, Timmermans PB. M. W. M. Bioorg. Med. Chem. 1994; 4: 63
    • 3b Kawai H, Sakamoto F, Taguchi M, Kitamura M, Sotomura M, Tsukamoto G. Chem. Pharm. Bull. 1991; 39: 1422
    • 3c Cascio G, Manghisi E, Porta R, Fregnan G. J. Med. Chem. 1985; 28: 815
    • 3d Alexander J, Bindra DS, Glass JD, Holahan MA, Renyer ML, Rork GS, Sitko GR, Stranieri MT, Stupienski RF, Veerapanane H, Cook JJ. J. Med. Chem. 1996; 39: 480
    • 3e Houghton TJ, Tanaka KS. E, Kang T, Dietrich E, Lafontaine Y, Delorme D, Ferreira SS, Viens F, Arhin FF, Sarmiento I, Lehoux D, Fadhil I, Laquerre K, Liu J, Ostiguy V, Poirier H, Moeck G, Parr TR. Jr, Rafai Far A. J. Med. Chem. 2008; 51: 6955
    • 3f Sakamoto F, Ikeda S, Tsukamoto G. Chem. Pharm. Bull. 1984; 32: 2241
  • 4 Satoa K, Zhaob L, Okadab S, Yamaki J. J. Power Sources 2011; 196: 5617 ; and references cited therein

    • There are some patents, for example:
    • 5a Simon B, Boeuve J.-P. US 005626981A, 1997
    • 5b Barker J, Gao F. US 005712059A, 1998
    • 5c Naruse Y, Fujita S, Omaru A. US 005714281A, 1998
    • 6a Schobert R. Angew. Chem., Int. Ed. Engl. 1988; 27: 855
    • 6b Gauthier JY, Leblanc Y, Black WC, Chan C.-C, Cromlish WA, Gordon R, Kennedey BP, Lau CK, Léger S, Wang Z, Ethier D, Guay J, Mancini J, Riendeau D, Tagari P, Vickers P, Wong E, Xu L, Prasit P. Bioorg. Med. Chem. Lett. 1996; 6: 87
    • 6c Sun C.-Q, Cheng PT. W, Stevenson J, Dejneka T, Brown B, Wang TC, Robl JA, Poss MA. Tetrahedron Lett. 2002; 43: 1161
    • 6d Dürr S, Höhlein U, Schobert R. J. Organomet. Chem. 1993; 458: 89
  • 7 Sahu DP. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2002; 41: 1722
  • 8 Papageorgiou G, Corrie JE.T. Tetrahedron 1997; 53: 3917
    • 9a Fischler H.-M, Heine H.-G, Hartmann W. Tetrahedron Lett. 1972; 13: 1701
    • 9b Newman MS, Addor RW. J. Am. Chem. Soc. 1953; 75: 1263
  • 10 Kim KH, Park BR, Lim JW, Kim JN. Tetrahedron Lett. 2011; 52: 3463
  • 11 When the reaction was carried out under the balloon pressure, the yield was decreased into 77% yield.
  • 12 General Procedure The reaction was performed using a pressure test tube equipped with a stirring bar in a 50 mL autoclave. To a solution of propargyl alcohol 1 (0.30 mmol) and AgOAc (0.030 mmol, 5.0 mg) in toluene (2.0 mL) was added DBU (0.12 mmol, 18 μL) under an inert gas. Immediately, CO2 gas was purged, and the reaction mixture was stirred at 30 °C under 1.5 MPa CO2 pressure. After the reaction was completed, the purification by column chromatography [SiO2, eluted with n-hexane–EtOAc (100:1)] gave the corresponding carbonate 2.
  • 13 Representative Experimental Data 4-Pentyl-5-phenyl-1,3-dioxol-2-one (2a) Reaction time 24 h; yield 96%; 66.9 mg; colorless oil. 1H NMR (400 MHz, CDCl3): δ = 0.91 (t, J = 7.1 Hz, 3 H), 1.37 (m, 4 H), 1.71 (m, 2 H), 2.69 (t, J = 7.6 Hz, 2 H), 7.37–7.48 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 13.9, 22.3, 24.8, 26.5, 31.1, 125.2, 125.6, 128.9, 129.0, 137.2, 139.2, 152.4. IR (KBr): 2958, 2932, 2862, 1821, 1449, 1248, 1188, 1098, 1057, 1026, 977, 760, 692. ESI-HRMS: m/z calcd for C14H17O3 + [M + H]+: 233.1172; found: 233.1177.

    • See the Supporting Information; similar isomerizations have been observed by some groups, see:
    • 14a Hashmi AS. K, Rudolph M, Schymura S, Visus J, Frey W. Eur. J. Org. Chem. 2006; 4905
    • 14b Wong VH. L, Andy Hor TS, Hii KK. Chem. Commun. 2013; 49: 9272