Synlett 2014; 25(09): 1287-1290
DOI: 10.1055/s-0033-1341240
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium Porphyrin Catalyzed Hydrogenation of Alkynes: Stereoselective Synthesis of cis-Alkenes

Ryo Nishibayashi
a   Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan   Fax: +81(75)3832438   Email: kurahashi.takuya.2c@kyoto-u.ac.jp   Email: matsubara.seijiro.2e@kyoto-u.ac.jp
,
Takuya Kurahashi*
a   Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan   Fax: +81(75)3832438   Email: kurahashi.takuya.2c@kyoto-u.ac.jp   Email: matsubara.seijiro.2e@kyoto-u.ac.jp
b   JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
,
Seijiro Matsubara*
a   Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan   Fax: +81(75)3832438   Email: kurahashi.takuya.2c@kyoto-u.ac.jp   Email: matsubara.seijiro.2e@kyoto-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 27 February 2014

Accepted after revision: 24 March 2014

Publication Date:
08 May 2014 (online)


Abstract

(Tetraphenylporphyrin)palladium was developed as a catalyst for the chemoselective and stereoselective hydrogenation of alkynes to cis-alkenes by the syn-addition of hydrogen. Alkynes containing various functional groups were tolerated in the reaction, which gave the corresponding cis-alkenes in good to excellent yields.

Supporting Information

 
  • References

  • 1 Lindlar H. Helv. Chim. Acta 1952; 35: 446

    • For selected examples of heterogeneous catalysts, see:
    • 2a Sharma GV. M, Choudary BM, Ravichandra Sarma M, Koteswara Rao K. J. Org. Chem. 1989; 54: 2997
    • 2b Choudary BM, Vasantha G, Sharma M, Bharathi P. Angew. Chem. Int. Ed. Engl. 1989; 28: 465
    • 2c Sakai M, Takai Y, Mochizuki H, Sasaki K, Sakakibara Y. Bull. Chem. Soc. Jpn. 1994; 67: 1984
    • 2d Choi J, Yoon NM. Tetrahedron Lett. 1996; 37: 1037
    • 2e Chandrasekhar S, Narsihmulu C, Chandrashekar G, Shyamsunder T. Tetrahedron Lett. 2004; 45: 2421
    • 2f Alonso F, Osante I, Yus M. Adv. Synth. Catal. 2006; 348: 305
    • 2g Nishio R, Sugiura M, Kobayashi S. Org. Biomol. Chem. 2006; 4: 992
    • 2h Segura Y, López N, Pérez-Ramíez J. J. Catal. 2007; 247: 383
    • 2i Sagiki H, Mori S, Ohkubo T, Ikawa T, Kume A, Maegawa T, Monguchi Y. Chem. Eur. J. 2008; 14: 5109
    • 2j Mori S, Ohkubo T, Ikawa T, Kume A, Maegawa T, Monguchi Y, Sagiki H. J. Mol. Catal., A 2009; 307: 77
    • 2k Kawashima A, Miyamoto C, Yabe Y, Inai M, Asakawa T, Hamashima Y, Sajiki H, Kan T. Org. Lett. 2013; 15: 1306

      For examples of homogeneous catalysts, see:
    • 3a Osborn JA, Jardine FH, Young JF, Wilkinson G. J. Chem. Soc. A 1966; 1711
    • 3b Crabtree RH. J. Chem. Soc. Chem. Commun. 1975; 647
    • 3c Schrock RR, Osborn JA. J. Am. Chem. Soc. 1976; 98: 2134
    • 3d Crabtree RH, Gautier A, Giordano G, Khan T. J. Organomet. Chem. 1977; 141: 113
    • 3e Sivak AJ, Muetterties EL. J. Am. Chem. Soc. 1979; 101: 4878
    • 3f Sanger AR. Can. J. Chem. 1982; 60: 1363
    • 3g Sodeoka M, Shibasaki M. J. Org. Chem. 1985; 50: 1149
    • 3h Bianchini C, Meli A, Laschi F, Ramirez JA, Zanello P, Vacca A. Inorg. Chem. 1988; 27: 4429
    • 3i Alvarez M, Lugan N, Mathieu R. J. Organomet. Chem. 1994; 468: 249
    • 3j van Laren MW, Elsevier CJ. Angew. Chem. Int. Ed. 1999; 38: 3715
    • 3k Sprengers JW, Wassenaar J, Clement ND, Cavell KJ, Elsevier CJ. Angew. Chem. Int. Ed. 2005; 44: 2026
    • 3l Malacea R, Manoury E, Routaboul L, Daran J.-C, Poli R, Dunne JP, Withwood AC, Godard C, Duckett SB. Eur. J. Inorg. Chem. 2006; 1803
    • 3m Jurcik V, Nolan SP, Cazin CS. J. Chem. Eur. J. 2009; 15: 2059
    • 3n Li J, Hua R, Liu T. J. Org. Chem. 2010; 75: 2966
    • 3o Kohrt C, Wienhöfer G, Pribbenow C, Beller M, Heller D. ChemCatChem 2013; 5: 2818
    • 3p Songis O, Cazin CS. J. Synlett 2013; 24: 1877
    • 3q Whittaker AM, Lalic G. Org. Lett. 2013; 15: 1112
    • 4a Thomas DW, Martell AE. J. Am. Chem. Soc. 1959; 81: 5111
    • 4b Fleischer EB, Miller CK, Webb LE. J. Am. Chem. Soc. 1964; 86: 2342
    • 4c Buchler JW In Porphyrins and Metalloporphyrins: Smith K. M. Elsevier; Amsterdam: 1975. Chap. 5, 157
    • 4d Wiehe A, Stollberg H, Runge S, Paul A, Senge MO. B, Röder J. Porphyrins Phthalocyanines 2001; 5: 853
    • 4e Sharada DS, Muresan AZ, Muthukumaran K, Lindsey JS. J. Org. Chem. 2005; 70: 3500
  • 5 Semireduction of Alkynes; General Procedure The reaction was performed in a 20-mL round-bottomed flask equipped with a Teflon-coated magnetic stirrer bar. A solution of Pd(TPP) (3.6 mg, 0.005 μmol) and DMAP (0.01 mmol, 1.2 mg) in pyridine (1 mL) was stirred at 25 °C for 0.5 h under H2 (1 atm, balloon). A soln of alkyne 1 (0.5 mmol) in pyridine (4 mL) was added, and the mixture was stirred for the indicated time. H2O (20 mL) was added, and the aqueous phase was extracted with EtOAc (3 × 50 mL). The organic phases were combined, dried (Na2SO4), and concentrated in vacuo. The residue was purified by flash column chromatography [silica gel (20 g, 2 × 15 cm), hexane–EtOAc (40:1)] to give an alkene 2.

    • We did not observed the formation of TPP as a result of demetalation of Pd(TPP) in the 1H NMR spectrum of the crude mixture. Despite this, the formation of Pd colloids as catalytically active species from the Pd(TPP) complex cannot be ruled out. Pd(TPP) might slowly release very small numbers of Pd atoms in situ to form catalytically highly active palladium colloids. For some examples of Pd nanoparticles stabilized by pyridines or their derivatives, see:
    • 6a Tsutsumi K, Funaki Y, Hirokawa Y, Hashimoto T. Langmuir 1999; 15: 5200
    • 6b Semagina NV, Bykov AV, Sulman EM, Matveeva VG, Sidorov SN, Dubrovina LV, Valetsky PM, Kiselyova OI, Khokhlov AR, Stein B, Bronstein LM. J. Mol. Catal., A 2004; 208: 273
    • 6c Evangelisti C, Panziera N, Pertici P, Vitulli G, Salvadori P, Battocchio C, Polzonetti G. J. Catal. 2009; 262: 287