Subscribe to RSS
DOI: 10.1055/s-0033-1350411
Magnetic Resonance Imaging of Sacroiliitis in Patients with Spondyloarthritis: Correlation with Anatomy and Histology
Magnetresonanztomografie der Sakroiliitis bei Patienten mit Spondyloarthritis: Korrelation mit Anatomie und HistologieCorrespondence
Publication History
05 January 2013
19 July 2013
Publication Date:
02 September 2013 (online)
- Zusammenfassung
- Sacroiliitis and Spondyloarthritis
- Anatomy, Histology and Biochemistry as a Basis for Imaging
- Sacroiliitis and MRI
- Summary
- References
Abstract
Magnetic resonance imaging (MRI) of the sacroiliac joints (SIJs) has become established as a valuable modality for the early diagnosis of sacroiliitis in patients with inconclusive radiographic findings. Positive MRI findings have the same significance as a positive test for HLA-B27. Sacroiliitis is one of the key features of axial spondyloarthritis (SpA) in the classification proposed by the Assessments in Ankylosing Spondylitis (ASAS) group. Early signs of sacroiliitis include enthesitis of articular fibrocartilage, capsulitis, and osteitis. In more advanced disease, structural (chronic) lesions will be visible, including periarticular fatty deposition, erosions, subchondral sclerosis, and transarticular bone buds and bridges. In this article we describe magnetic resonance (MR) findings and provide histologic biopsy specimens of the respective disease stages. The predominant histologic feature of early and active sacroiliitis is the destruction of cartilage and bone by proliferations consisting of fibroblasts and fibrocytes, T-cells, and macrophages. Advanced sacroiliitis is characterized by new bone formation with enclosed cartilaginous islands and residual cellular infiltrations, which may ultimately lead to complete ankylosis. Knowledge of the morphologic appearance of the sacroiliac joints and their abnormal microscopic and gross anatomy is helpful in correctly interpreting MR findings.
Citation Format:
• Hermann KGA, Bollow M. Magnetic Resonance Imaging of Sacroiliitis in Patients with Spondyloarthritis: Correlation with Anatomy and Histology. Fortschr Röntgenstr 2014; 186: 230 – 237
#
Zusammenfassung
Die Magnetresonanztomografie (MRT) der Sakroiliakalgelenke hat sich als probates Mittel zur Frühdiagnostik der Sakroiliitis bei inkonklusivem Röntgenbild etabliert. Ein positiver MRT-Befund hat dabei eine ähnlich hohe Bedeutung wie der Nachweis von HLA-B27. Der Nachweis der Sakroiliitis in der Bildgebung ist einer der Schlüsselbefunde in der Klassifikation der axialen Spondyloarthritis ensprechend der Kriterien der Assessments in Ankylosing Spondylitis (ASAS) Gruppe. Frühe Zeichen der Sakroiliitis sind die Enthesitis des artikulären Faserknorpels, Kapsulitiden und Osteitiden. In späteren Stadien kommen strukturelle (chronische) Veränderungen hinzu, dazu gehören Fettdepositionen, Erosionen, subchondrale Sklerosierungen und transartikulären Knochenbrücken bis hin zur Ankylose. Diese MRT-Befunde werden histologischen Darstellungen von Gelenkbiopsaten gegenüber gestellt. Bei aktiver Sakroiliitis dominiert histologisch ein proliferatives, pannusartiges Bindegewebe, welches Knorpel und Knochen destruiert. Dieses besteht neben Fibroblasten und Fibrozyten aus T-Zellen und Makrophagen. Später dominieren von neu gebildetem Knochen umgebene Knorpelinseln sowie Reste zellulärer Infiltrate. Kenntnisse der Morphologie der Sakroiliakalgelenke und der pathologischen Mikro- und Makroanatomie der Sakroiliitis sind hilfreich für das Verständnis der magnetresonanztomografischen Befunde.
#
Sacroiliitis and Spondyloarthritis
Sacroiliitis is an important clinical and diagnostic feature of ankylosing spondylitis (AS) [1] and other forms of spondyloarthritis (SpA) [2]. While sacroiliitis can be diagnosed by conventional radiography in established disease, a more sensitive diagnostic tool such as magnetic resonance imaging (MRI) is necessary for evaluating patients with early disease. Demonstration of sacroiliitis is one of the key criteria for axial SpA in the classification of the Assessments in Ankylosing Spondylitis (ASAS) group [3].
SpA patients suffer from pain and stiffening of the axial skeleton and also to some degree the peripheral joints, predominantly the lower extremity. There is a high association with the HLA-B27 antigene and extraskeletal manifestations such as psoriasis, anterior uveitis or inflammatory bowel disease may occur.
The clinical key symptom of SpA is inflammatory back pain characterized by onset before age 40, insidious onset, relief with movement, no improvement with rest, and pain at night (with improvement after getting up) [4]. Despite this clear definition, the symptoms are often mistaken for chronic low back pain, and an average of 8.5 years elapse after the onset of clinical symptoms before the diagnosis of AS – the prototype of SpA – is made in HLA-B27-positive patients [5]. The delay is even longer, 11.4 years on average, in HLA-B27-negative patients or in women [5].
To improve on this situation, decision-making trees have been proposed to simplify and speed up the diagnosis of SpA [6]. This has been widely acknowledged and as a consequence MRI has been approved to contribute to the classification of SpA in terms of the newly developed ASAS classification criteria [3]. Sensitivities and specificities of over 90 % [7] [8] [9] [10] and a high positive likelihood ratio of approx. 9.0 [6] clearly indicate that MRI should be used early so that patients may benefit from early initiation of a rigorous therapeutic regimen [11]. The positive likelihood ratio of MRI of the sacroiliac joints (SIJs) is as high as that of the HLA-B27 blood test [6]. However, one has to be aware that a reliable MRI diagnosis of sacroiliitis crucially depends on a thorough clinical history. It has been shown that analysis of MRI alone has a sensitivity of 64 % and a specificity of 80 %, which increase to 95 % and 98 %, respectively, when images are interpreted in conjunction with clinical data [12].
#
Anatomy, Histology and Biochemistry as a Basis for Imaging
Histological examinations of biopsy specimens from the SIJs [13] [14] [15] [16] and autopsy preparations [17] have improved our understanding of the pathogenesis of SpA. These specimens, in part also presented in this review article, were acquired in the setting of a research project with approval of the local ethics committee during the course of CT-guided steroid injections in painful patients [16]. In general, joint biopsies are not needed for routine follow-up of SpA patients. As a result of these investigations, the demonstration of tumor necrosis factor alpha (TNF-alpha) messenger ribonucleic acid (mRNA) in cellular infiltrates in these biopsy specimens [15] opened up a new era of therapy with TNF-alpha inhibitors [18] [19] [20] [21]. MRI of the axial skeleton has an important role in monitoring patients on TNF-alpha therapy [18] [22] [23] [24].
The complex anatomy of the sacroiliac joints has been described in detail [25] [26]. MRI of the SIJs is performed in the oblique coronal plane with acquisition of a T1-weighted turbo spin echo (TSE) sequence, a T1-weighted fat-suppressed 3 D gradient echo (GRE) sequence for the depiction of cartilage, and a fat-saturated T1-weighted GRE sequence after contrast administration. The slice thickness should be 1.5 – 2.0 mm and dynamic, time-resolved MRI sequences are not generally needed for the diagnosis of sacroiliitis but may be potentially useful in monitoring disease activity [8] [27]. Alternatively, if contrast medium administration is not possible, a short tau inversion recovery (STIR) sequence may be used. As a recommendation of the ASAS group, a T1-weighted TSE sequence and a STIR sequence are sufficient for MRI of the sacroiliac joints [28]. However, these recommendations are intended to be applicable worldwide and therefore may be regarded as the “minimal standard”.
The SIJ consists of a cartilaginous part and a fibrous (or ligamentous) compartment with very strong anterior and posterior sacroiliac ligaments [29]. This makes the SIJ an amphiarthrosis with movement restricted to slight rotation and translation [29]. The articular surface being ear-shaped ([Fig. 1a]), different articular portions will be depicted, depending on the slice position. Anterior oblique coronal images ([Fig. 1b, e]) only show the cartilaginous joint portion, while more posterior sections ([Fig. 2a, d]) show both cartilaginous and ligamentous portions. Another specific feature of the SIJs is that two different types of cartilage cover the two articular surfaces. While the sacral cartilage is purely hyaline, the iliac side is covered by a mixture of hyaline and fibrous cartilage ([Fig. 1 d]) [29] [30]. Due to its fibrocartilaginous components, the sacroiliac joint is a so-called articular enthesis [31].
The extracellular matrix of fibrocartilage is rich in proteoglycans and glycosaminoglycans, which are strongly hydrophilic molecules and attract water, thereby ensuring the stable elasticity of cartilage [32]. Damage to a joint by inflammatory or degenerative processes leads to a loss of these negatively charged macromolecules. As a result, there is greater affinity of gadolinium complexes from paramagnetic contrast agents, which also possess a negative charge, to the extracellular matrix of fibrocartilage [33]. This is the mechanism underlying late enhancement in damaged joints [34] [35].
#
Sacroiliitis and MRI
Unlike conventional radiography and computed tomography, which only demonstrate structural or chronic changes, MRI depicts both active (acute) and structural signs of sacroiliitis. Active changes are subsumed under the label of enthesitis and include fibrocartilaginous enhancement, predominantly at the iliac joint surface, capsulitis, and juxta-articular osteiitis ([Fig. 4]). Florid, or active, stages of sacroiliitis are characterized by proliferative inflammatory tissue destroying cartilage and bone ([Fig. 4], [5]). This tissue consists of fibroblasts and fibrocytes, T-cells, and macrophages [16]. Ingrowth of vessels is one of the reasons why there is a signal increase on contrast-enhanced images ([Fig. 5]). There is controversy about the term “synovitis” because only sparse amounts of synovial, villus-like tissue are histologically demonstrated between the iliac and sacral cartilage near the anterior and posterior joint capsules with obliteration in the further course of the disease [17].
Enthesitis is depicted as contrast medium enhancement of the joint capsule and within the articular fibrocartilage and may extend continuously from the joint to the pericapsular tendon and ligament attachments ([Fig. 3], [4]). Pericapsular soft tissue (fat and muscle) typically shows no enhancement in spondyloarthritis – which is the case only in septic sacroiliitis (so-called lava cleft phenomenon) [36].
Early periarticular osteitis denotes inflammation of bone marrow areas adjacent to the sacroiliac joints predominantly on the iliac side ([Fig. 3]). It represents an extension of inflammation of articular fibrocartilage of the SIJs. The size of the bone marrow area affected by osteitis is a measure of the inflammatory activity of sacroiliitis and is graded by using semiquantitative techniques [25]. Osteitis is also currently the only parameter that defines a positive MRI finding in the classification of the ASAS group, especially when it is present in two or more slices [28]. The signal intensity of osteitis varies with the interval between image acquisition and contrast medium injection ([Fig. 3]).
At later stages areas of osteitis are transformed into periarticular deposits of fatty tissue [25] [37]. Chronic sacroiliitis is further characterized by erosions, subchondral sclerosis, transarticular bone bridges, and bone buds ([Fig. 5], [6]). These processes may ultimately lead to complete ankylosis of the sacroiliac joints, which is seen on MRI as a so-called phantom joint.
Erosions are depicted on MR images as discontinuities of the cortical bone. Erosions are contiguous with the joint space. Erosions in sacroiliac arthritis initially tend to occur on the iliac side of the joint [38], due to its fibrocartilaginous components, and may later progress to corresponding erosions also on the sacral side ([Fig. 5]). Strong contrast enhancement indicates active erosion, while so-called smooth erosions display much weaker enhancement and are characterized by the presence of marginal sclerosis ([Fig. 4]). Several confluent erosions have the appearance of a string of beads and lead to so-called pseudodilation of the sacroiliac joint as they progress further ([Fig. 5]).
Subchondral sclerosis is seen as areas of low or no signal on all sequences. They often predominate on the iliac side ([Fig. 4]) and only later affect the periarticular area on the sacral side as well ([Fig. 5]). Sclerosis shows no enhancement after contrast medium administration.
Bone buds ([Fig. 5]) and transarticular bone bridges are the first sign of ankylosing processes of the SIJ. They are more clearly identified by computed tomography since bony structures are depicted only indirectly on MR images. The presence of bone bridges leads to increasing blurring of the joint cleft until complete ankylosis occurs. Transarticular bone bridges are characterized by low signal intensity on all sequences. When there is complete ankylosis, the SIJ is seen as a low-intensity line surrounded by deposits of fatty tissue, which is hyperintense on T1-weighted images. This condition is referred to as a phantom joint ([Fig. 6]).
#
Summary
In summary, MRI of the sacroiliac joints sensitively detects both active and structural changes, making it an ideal imaging modality for early diagnosis and follow-up of sacroiliitis in axial spondyloarthritis. Some of the changes are subtle and can only be detected after administration of a paramagnetic contrast agent, especially in early disease.
#
#
Acknowledgement
This article is dedicated to Professor Bernd Hamm on the occasion of his 60th birthday.
-
References
- 1 van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum 1984; 27: 361-368
- 2 Dougados M, van der Linden S, Juhlin R et al. The European Spondylarthropathy Study Group preliminary criteria for the classification of spondylarthropathy. Arthritis Rheum 1991; 34: 1218-1227
- 3 Rudwaleit M, van der Heijde D, Landewe R et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann Rheum Dis 2009; 68: 777-783
- 4 Sieper J, van der Heijde D, Landewe R et al. New criteria for inflammatory back pain in patients with chronic back pain: a real patient exercise by experts from the Assessment of SpondyloArthritis international Society (ASAS). Ann Rheum Dis 2009; 68: 784-788
- 5 Feldtkeller E, Khan MA, van der Heijde D et al. Age at disease onset and diagnosis delay in HLA-B27 negative vs. positive patients with ankylosing spondylitis. Rheumatol Int 2003; 23: 61-66
- 6 Rudwaleit M, van der Heijde D, Khan MA et al. How to diagnose axial spondyloarthritis early. Ann Rheum Dis 2004; 63: 535-543
- 7 Braun J, Bollow M, Eggens U et al. Use of dynamic magnetic resonance imaging with fast imaging in the detection of early and advanced sacroiliitis in spondylarthropathy patients. Arthritis Rheum 1994; 37: 1039-1045
- 8 Bollow M, Braun J, Hamm B et al. Early sacroiliitis in patients with spondyloarthropathy: evaluation with dynamic gadolinium-enhanced MR imaging. Radiology 1995; 194: 529-536
- 9 Blum U, Buitrago-Tellez C, Mundinger A et al. Magnetic resonance imaging (MRI) for detection of active sacroiliitis: A prospective study comparing conventional radiography, scintigraphy, and contrast enhanced MRI. J Rheumatol 1996; 23: 2107-2115
- 10 Puhakka KB, Jurik AG, Egund N et al. Imaging of sacroiliitis in early seronegative spondylarthropathy. Assessment of abnormalities by MR in comparison with radiography and CT. Acta Radiol 2003; 44: 218-229
- 11 Song IH, Hermann K, Haibel H et al. Effects of etanercept versus sulfasalazine in early axial spondyloarthritis on active inflammatory lesions as detected by whole-body MRI (ESTHER): a 48-week randomised controlled trial. Ann Rheum Dis 2011; 70: 590-596
- 12 Remplik P, Schukai O, Roemer FW et al. Influence of clinical information on the diagnostic validity of MRI in the detection of abacterial sacroiliitis. Fortschr Röntgenstr 2005; 177: 842-848
- 13 Dihlmann W, Lindenfelser R, Selberg W. Histomorphology of the sacroiliac joint in ankylosing spondylitis and relevance to treatment (author’s transl). Dtsch Med Wochenschr 1977; 102: 129-132
- 14 Shichikawa K, Tsujimoto M, Nishioka J et al. Histopathology of early sacroiliitis and enthesitis in ankylosing spondylitis: advances in inflammation research. In: Ziff M, Cohen SB. eds The spondyloarthropathies. New York: NY: Raven; 1985: 15-24
- 15 Braun J, Bollow M, Neure L et al. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum 1995; 38: 499-505
- 16 Bollow M, Fischer T, Reisshauer H et al. Quantitative analyses of sacroiliac biopsies in spondyloarthropathies: T cells and macrophages predominate in early and active sacroiliitis- cellularity correlates with the degree of enhancement detected by magnetic resonance imaging. Ann Rheum Dis 2000; 59: 135-140
- 17 Francois RJ, Gardner DL, Degrave EJ et al. Histopathologic evidence that sacroiliitis in ankylosing spondylitis is not merely enthesitis. Arthritis Rheum 2000; 43: 2011-2024
- 18 Brandt J, Haibel H, Cornely D et al. Successful treatment of active ankylosing spondylitis with the anti-tumor necrosis factor alpha monoclonal antibody infliximab. Arthritis Rheum 2000; 43: 1346-1352
- 19 Braun J, Brandt J, Listing J et al. Treatment of active ankylosing spondylitis with infliximab: a randomised controlled multicentre trial. Lancet 2002; 359: 1187-1193
- 20 Davis JCJr, Van Der Heijde D, Braun J et al. Recombinant human tumor necrosis factor receptor (etanercept) for treating ankylosing spondylitis: a randomized, controlled trial. Arthritis Rheum 2003; 48: 3230-3236
- 21 van der Heijde D, Kivitz A, Schiff MH et al. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2006; 54: 2136-2146
- 22 Marzo-Ortega H, McGonagle D, O'Connor P et al. Efficacy of etanercept in the treatment of the entheseal pathology in resistant spondylarthropathy: a clinical and magnetic resonance imaging study. Arthritis Rheum 2001; 44: 2112-2117
- 23 Braun J, Baraliakos X, Golder W et al. Magnetic resonance imaging examinations of the spine in patients with ankylosing spondylitis, before and after successful therapy with infliximab: evaluation of a new scoring system. Arthritis Rheum 2003; 48: 1126-1136
- 24 Haibel H, Rudwaleit M, Brandt HC et al. Adalimumab reduces spinal symptoms in active ankylosing spondylitis: clinical and magnetic resonance imaging results of a fifty-two-week open-label trial. Arthritis Rheum 2006; 54: 678-681
- 25 Hermann KG, Braun J, Fischer T et al. Magnetic resonance imaging of sacroiliitis: anatomy, histological pathology, MR-morphology, and grading. Radiologe 2004; 44: 217-228
- 26 Bollow M, Braun J, Hermann KG. Sakroiliakalgelenk (mit Exkurs: Spinale Entzündungsmuster rheumatischer Erkrankungen). In: Vahlensieck M, Reiser M. eds Magnetresonanztomographie des muskuloskelettalen Systems. Stuttgart: Thieme; 2006
- 27 Gaspersic N, Sersa I, Jevtic V et al. Monitoring ankylosing spondylitis therapy by dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Skeletal Radiol 2008; 37: 123-131
- 28 Rudwaleit M, Jurik AG, Hermann KG et al. Defining active sacroiliitis on Magnetic Resonance Imaging (MRI) for classification of axial spondyloarthritis – a consensual approach by the ASAS/OMERACT MRI Group. Ann Rheum Dis 2009; 68: 1520-1527
- 29 Kampen WU, Tillmann B. Age-related changes in the articular cartilage of human sacroiliac joint. Anatomy and embryology 1998; 198: 505-513
- 30 McLauchlan GJ, Gardner DL. Sacral and iliac articular cartilage thickness and cellularity: relationship to subchondral bone end-plate thickness and cancellous bone density. Rheumatology (Oxford) 2002; 41: 375-380
- 31 Benjamin M, McGonagle D. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J Anat 2001; 199: 503-526
- 32 Aktas T. Die molekulare Zusammensetzung der extrazellulären Matrix des Lig. scapholunatum. München: Munich Ludwig-Maximilians-Universität; 2006
- 33 Bashir A, Gray ML, Hartke J et al. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 1999; 41: 857-865
- 34 Williams A, Gillis A, McKenzie C et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. Am J Roentgenol Am J Roentgenol 2004; 182: 167-172
- 35 Taupitz M, Stolzenburg N, Ebert M et al. Gadolinium-containing magnetic resonance contrast media: investigation on the possible transchelation of Gd(3)(+) to the glycosaminoglycan heparin. Contrast media & molecular imaging 2013; 8: 108-116
- 36 Stürzenbecher A, Braun J, Paris S et al. MR imaging of septic sacroiliitis. Skeletal Radiol 2000; 29: 439-446
- 37 Bollow M, Braun J, Taupitz M et al. CT-guided intraarticular corticosteroid injection into the sacroiliac joints in patients with spondyloarthropathy: indication and follow-up with contrast-enhanced MRI. J Comput Assist Tomogr 1996; 20: 512-521
- 38 Bollow M, Hermann KGA, Biedermann T et al. Very early spondyloarthritis: where the inflammation in the sacroiliac joints starts. Ann Rheum Dis 2005; 64: 1644-1646
Correspondence
-
References
- 1 van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum 1984; 27: 361-368
- 2 Dougados M, van der Linden S, Juhlin R et al. The European Spondylarthropathy Study Group preliminary criteria for the classification of spondylarthropathy. Arthritis Rheum 1991; 34: 1218-1227
- 3 Rudwaleit M, van der Heijde D, Landewe R et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann Rheum Dis 2009; 68: 777-783
- 4 Sieper J, van der Heijde D, Landewe R et al. New criteria for inflammatory back pain in patients with chronic back pain: a real patient exercise by experts from the Assessment of SpondyloArthritis international Society (ASAS). Ann Rheum Dis 2009; 68: 784-788
- 5 Feldtkeller E, Khan MA, van der Heijde D et al. Age at disease onset and diagnosis delay in HLA-B27 negative vs. positive patients with ankylosing spondylitis. Rheumatol Int 2003; 23: 61-66
- 6 Rudwaleit M, van der Heijde D, Khan MA et al. How to diagnose axial spondyloarthritis early. Ann Rheum Dis 2004; 63: 535-543
- 7 Braun J, Bollow M, Eggens U et al. Use of dynamic magnetic resonance imaging with fast imaging in the detection of early and advanced sacroiliitis in spondylarthropathy patients. Arthritis Rheum 1994; 37: 1039-1045
- 8 Bollow M, Braun J, Hamm B et al. Early sacroiliitis in patients with spondyloarthropathy: evaluation with dynamic gadolinium-enhanced MR imaging. Radiology 1995; 194: 529-536
- 9 Blum U, Buitrago-Tellez C, Mundinger A et al. Magnetic resonance imaging (MRI) for detection of active sacroiliitis: A prospective study comparing conventional radiography, scintigraphy, and contrast enhanced MRI. J Rheumatol 1996; 23: 2107-2115
- 10 Puhakka KB, Jurik AG, Egund N et al. Imaging of sacroiliitis in early seronegative spondylarthropathy. Assessment of abnormalities by MR in comparison with radiography and CT. Acta Radiol 2003; 44: 218-229
- 11 Song IH, Hermann K, Haibel H et al. Effects of etanercept versus sulfasalazine in early axial spondyloarthritis on active inflammatory lesions as detected by whole-body MRI (ESTHER): a 48-week randomised controlled trial. Ann Rheum Dis 2011; 70: 590-596
- 12 Remplik P, Schukai O, Roemer FW et al. Influence of clinical information on the diagnostic validity of MRI in the detection of abacterial sacroiliitis. Fortschr Röntgenstr 2005; 177: 842-848
- 13 Dihlmann W, Lindenfelser R, Selberg W. Histomorphology of the sacroiliac joint in ankylosing spondylitis and relevance to treatment (author’s transl). Dtsch Med Wochenschr 1977; 102: 129-132
- 14 Shichikawa K, Tsujimoto M, Nishioka J et al. Histopathology of early sacroiliitis and enthesitis in ankylosing spondylitis: advances in inflammation research. In: Ziff M, Cohen SB. eds The spondyloarthropathies. New York: NY: Raven; 1985: 15-24
- 15 Braun J, Bollow M, Neure L et al. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum 1995; 38: 499-505
- 16 Bollow M, Fischer T, Reisshauer H et al. Quantitative analyses of sacroiliac biopsies in spondyloarthropathies: T cells and macrophages predominate in early and active sacroiliitis- cellularity correlates with the degree of enhancement detected by magnetic resonance imaging. Ann Rheum Dis 2000; 59: 135-140
- 17 Francois RJ, Gardner DL, Degrave EJ et al. Histopathologic evidence that sacroiliitis in ankylosing spondylitis is not merely enthesitis. Arthritis Rheum 2000; 43: 2011-2024
- 18 Brandt J, Haibel H, Cornely D et al. Successful treatment of active ankylosing spondylitis with the anti-tumor necrosis factor alpha monoclonal antibody infliximab. Arthritis Rheum 2000; 43: 1346-1352
- 19 Braun J, Brandt J, Listing J et al. Treatment of active ankylosing spondylitis with infliximab: a randomised controlled multicentre trial. Lancet 2002; 359: 1187-1193
- 20 Davis JCJr, Van Der Heijde D, Braun J et al. Recombinant human tumor necrosis factor receptor (etanercept) for treating ankylosing spondylitis: a randomized, controlled trial. Arthritis Rheum 2003; 48: 3230-3236
- 21 van der Heijde D, Kivitz A, Schiff MH et al. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2006; 54: 2136-2146
- 22 Marzo-Ortega H, McGonagle D, O'Connor P et al. Efficacy of etanercept in the treatment of the entheseal pathology in resistant spondylarthropathy: a clinical and magnetic resonance imaging study. Arthritis Rheum 2001; 44: 2112-2117
- 23 Braun J, Baraliakos X, Golder W et al. Magnetic resonance imaging examinations of the spine in patients with ankylosing spondylitis, before and after successful therapy with infliximab: evaluation of a new scoring system. Arthritis Rheum 2003; 48: 1126-1136
- 24 Haibel H, Rudwaleit M, Brandt HC et al. Adalimumab reduces spinal symptoms in active ankylosing spondylitis: clinical and magnetic resonance imaging results of a fifty-two-week open-label trial. Arthritis Rheum 2006; 54: 678-681
- 25 Hermann KG, Braun J, Fischer T et al. Magnetic resonance imaging of sacroiliitis: anatomy, histological pathology, MR-morphology, and grading. Radiologe 2004; 44: 217-228
- 26 Bollow M, Braun J, Hermann KG. Sakroiliakalgelenk (mit Exkurs: Spinale Entzündungsmuster rheumatischer Erkrankungen). In: Vahlensieck M, Reiser M. eds Magnetresonanztomographie des muskuloskelettalen Systems. Stuttgart: Thieme; 2006
- 27 Gaspersic N, Sersa I, Jevtic V et al. Monitoring ankylosing spondylitis therapy by dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Skeletal Radiol 2008; 37: 123-131
- 28 Rudwaleit M, Jurik AG, Hermann KG et al. Defining active sacroiliitis on Magnetic Resonance Imaging (MRI) for classification of axial spondyloarthritis – a consensual approach by the ASAS/OMERACT MRI Group. Ann Rheum Dis 2009; 68: 1520-1527
- 29 Kampen WU, Tillmann B. Age-related changes in the articular cartilage of human sacroiliac joint. Anatomy and embryology 1998; 198: 505-513
- 30 McLauchlan GJ, Gardner DL. Sacral and iliac articular cartilage thickness and cellularity: relationship to subchondral bone end-plate thickness and cancellous bone density. Rheumatology (Oxford) 2002; 41: 375-380
- 31 Benjamin M, McGonagle D. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J Anat 2001; 199: 503-526
- 32 Aktas T. Die molekulare Zusammensetzung der extrazellulären Matrix des Lig. scapholunatum. München: Munich Ludwig-Maximilians-Universität; 2006
- 33 Bashir A, Gray ML, Hartke J et al. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 1999; 41: 857-865
- 34 Williams A, Gillis A, McKenzie C et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. Am J Roentgenol Am J Roentgenol 2004; 182: 167-172
- 35 Taupitz M, Stolzenburg N, Ebert M et al. Gadolinium-containing magnetic resonance contrast media: investigation on the possible transchelation of Gd(3)(+) to the glycosaminoglycan heparin. Contrast media & molecular imaging 2013; 8: 108-116
- 36 Stürzenbecher A, Braun J, Paris S et al. MR imaging of septic sacroiliitis. Skeletal Radiol 2000; 29: 439-446
- 37 Bollow M, Braun J, Taupitz M et al. CT-guided intraarticular corticosteroid injection into the sacroiliac joints in patients with spondyloarthropathy: indication and follow-up with contrast-enhanced MRI. J Comput Assist Tomogr 1996; 20: 512-521
- 38 Bollow M, Hermann KGA, Biedermann T et al. Very early spondyloarthritis: where the inflammation in the sacroiliac joints starts. Ann Rheum Dis 2005; 64: 1644-1646