Subscribe to RSS
DOI: 10.1055/s-0033-1351025
Isolation of Major Components from the Roots of Godmania aesculifolia and Determination of Their Antifungal Activities
Publication History
received 08 February 2013
revised 24 July 2013
accepted 05 October 2013
Publication Date:
19 December 2013 (online)
Abstract
From the methanol root extract of Godmania aesculifolia, a species selected in a multinational OAS program aimed at discovering antifungal compounds from Latin American plants, a new chavicol diglycoside (1), the known 3,4-dihydroxy-2-(3-methylbut-2-en-1-yl)-3,4-dihydronaphthalen-1(2H)-one (2), and lapachol (3) were isolated and characterized by 1D and 2D NMR and MS techniques. Only 3 exhibited fairly good activity against a panel of clinical isolates of Cryptococcus neoformans (MIC50 between 7.8 and 31.2 µg/mL) and moderate activities against Candida spp. and non-albicans Candida spp.
Key words
Godmania aesculifolia - Bignoniaceae - lapachol - chavicol diglycoside - Trichophyton spp. - Microsporum spp. - Aspergillus spp. - Candida - Cryptococcus neoformans-
References
- 1 Barrett D. From natural products to clinically useful antifungals. Biochim Biophys Acta 2002; 1587: 224-233
- 2 Kauffman CA. Clinical efficacy of new antifungal agents. Curr Opin Microbiol 2006; 9: 483-488
- 3 Pfaller M, Diekema D. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007; 20: 133-163
- 4 Isham N, Bradley M, Ghannoum M. Susceptibility profile of dermatophytes shows no development of terbinafine resistance. Abstr Intersci Conf Antimicrob Agents Chemother 1999; 39: 549
- 5 Mukherjee PK, Leidich SD, Isham N, Leitner I, Ryder NS, Ghannoum MA. Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrob Agents Chemother 2003; 47: 82-86
- 6 Brouwer A, Rajanuwong A, Chierakul W, Griffin GE, Larsen RA, White NJ, Harrison TS. Combination antifungal therapies for HIV-associated cryptococcal meningitis: a randomised trial. Lancet 2004; 363: 11764-11767
- 7 Wollenweber E, Dorr M, Gomez LDP. Exudate flavonoids in Godmania aesculifolia (Bignoniaceae). Biochem Syst Ecol 1996; 24: 481-482
- 8 Stermitz FR, Arslanian RL, Castro O. Flavonoids from the leaf surface of Godmania aesculifolia (Bignoniaceae). Biochem Syst Ecol 1992; 20: 481
- 9 Guiraud P, Steiman R, Campos-Takaki GM, Seigle-Murandi F, Simeon de Buochberg M. Comparison of antibacterial and antifungal activities of lapachol and beta-lapachone. Planta Medica 1994; 60: 373-374
- 10 Gonçalves de Lima O, DʼAlburquerque I, Gonçalves de Lima C, Dalia Maia M. Substâncias antimicrobianas de plantas superiores – Comunicação XX: atividade antimicrobiana de alguns derivados do lapachol em comparacão com a xiloidona, nova ortonaftoquinona natural isolada de extratos do cerne do Pau dʼArco rôxo, Tabebuia avellaneda Lor. Ex Griseb. Revista do Instituto de Antibióticos (Recife) 1962; 4: 3-17
- 11 Sun JS, Geiser AH, Frydman B. A preparative synthesis of lapachol and related naphthoquinones. Tetrahedron Lett 1998; 39: 8221-8224
- 12 Peraza-Sanchez SR, Chavez D, Chai HB, Shin YG, Garcia R, Mejia M, Fairchild CR, Lane KE, Menendez AT, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD. Cytotoxic constituents of the roots of Ekmanianthe longiflora . J Nat Prod 2000; 63: 492-495
- 13 Lira AM, Araujo AAS, Basilio IDJ, Santos BLL, Santana DP, Macedo RO. Compatibility studies of lapachol with pharmaceutical excipients for the development of topical formulations. Thermochim Acta 2007; 457: 1-6
- 14 Ossowski T, Goulart MOF, de Abreu FC, Santana AEG, Miranda PRB, Costa CO, Liwo A, Falkowski P, Zarzeczanska D. Determination of the pK(a) values of some biologically active and inactive hydroxyquinones. J Braz Chem Soc 2008; 19: 175-183
- 15 Ali RM, Houghton PJ, Hoo TS. Antifungal activity of some Bignoniaceae found in Malaysia. Phytother Res 1998; 12: 331-334
- 16 Kuete V, Eyong KO, Folefoc GN, Beng VP, Hussain H, Krohn K, Nkenqfack AE. Antimicrobial activity of the methanolic extract and of the chemical constituents isolated from Newbouldia laevis . Pharmazie 2007; 62: 552-556
- 17 De Moura K, Emery F, Neves-Pinto C, Pinto MCFR, Dantas AP, Salomão K, de Castro SL, Pinto AV. Trypanocidal activity of isolated naphtoquinones from Tabebuia and some heterocyclic derivatives: A Review from an Interdisciplinary Study. J Braz Chem Soc 2001; 12: 325-338
- 18 Gafner S, Wolfender JL, Nianga M, Stoeckli-Evans H, Hostettmann K. Antifungal and antibacterial naphtoquinones from Newboldia alevis roots. Phytochemistry 1996; 42: 1315-1320
- 19 Azevedo Souza M, Johann S, Lima LA, Campos FF, Mendes IC, Beraldo H, de Souza-Fagundes EM, Cisalpino PS, Rosa CA, Alves TM, de Sá NP, Zani CL. The antimicrobial activity of lapachol and its thiosemicarbazone and semicarbazone derivatives. Mem Inst Oswaldo Cruz 2013; 108: 342-351
- 20 CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A3. 3rd. edition. Wayne: Clinical and Laboratory Standards Institute; 2008: 1-25
- 21 CLSI. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard M38-A2. 2nd. edition. Wayne: Clinical and Laboratory Standards Institute; 2008: 1-35
- 22 Ernst E, Roling E, Petzold R, Keele DJ, Klepser ME. In vitro activity of micafungin (FK-463) against Candida spp.: microdilution, time-kill, and postantifungal-effect studies. Antimicrob Agents Chemother 2002; 46: 3846-3853
- 23 Klepser M, Ernst EJ, Lewis RE, Ernst ME, Pfaller MA. Influence of test conditions on antifungal time-kill curve results: proposal for standardized methods. Antimicrob Agents Chemother 1998; 42: 1207-1212