Subscribe to RSS
DOI: 10.1055/s-0034-1378688
Synthesis of Pillar[6]arenes and Their Host–Guest Complexes
Publication History
Received: 12 November 2014
Accepted after revision: 10 December 2014
Publication Date:
12 March 2015 (online)
Abstract
Pillar[n]arenes are a fast-growing research topic in supramolecular chemistry. Originally the focus was predominantly on pillar[5]arenes; however, now more and more studies on pillar[6]arenes are being performed. The ability and selectivity of host–guest complexations depend strongly on the size of the inner cavities of these macrocycles. New results have stimulated us to compile the synthetic entries and the complexations of pillar[6]arenes with large cylindric cavities that offer space for many different guest molecules.
1 Introduction
2 Preparation of Pillar[6]arenes
2.1 Pillar[6]arenes by Macrocyclization Reactions
2.2 Hydroxypillar[6]arenes through Ether Cleavage
2.3 Hydroxypillar[6]arenes by Redox Reactions
2.4 Alkylation of Hydroxypillar[6]arenes
2.5 Pillar[6]arenes Obtained from Preformed Pillar[6]arenes by Transformation of Alkoxy Chains
3 Structure of Pillar[6]arenes in the Crystalline State and in Solution
3.1 Dodecaalkoxypillar[6]arenes
3.2 Perhydroxypillar[6]arenes
4 Generation of Complexes
4.1 Inclusion of Guest Molecules
4.2 Complexes of Ammonium Compounds
4.3 Complexes of Pyridinium Compounds
4.4 Complexes of Other Cations
4.5 Complexes of Electroneutral Guest Molecules
4.6 Complexes of Anions
4.7 Self-Assembly by Complexation
4.8 Binding on Metal Surfaces
4.9 Capture of Gases and Vapors
5 Conclusion
-
References
- 1 Ogoshi T, Kanai S, Fujinami S, Yamagishi T.-A, Nakamoto Y. J. Am. Chem. Soc. 2008; 130: 5022
- 2 Cao D, Kou Y, Liang J, Chen Z, Wang L, Meier H. Angew. Chem. Int. Ed. 2009; 48: 9721 ; Angew. Chem. 2009, 121, 9901
- 3 Ma Y, Zhang Z, Ji X, Han C, He J, Abliz Z, Chen W, Huang F. Eur. J. Org. Chem. 2011; 5331
- 4 Holler M, Allenbach N, Sonet J, Nierengarten J.-F. Chem. Commun. 2012; 48: 2576
- 5 Tao H, Cao D, Liu L, Kou Y, Wang L, Meier H. Sci. China Chem. 2012; 55: 223
- 6 Ogoshi T, Ueshima N, Akutso T, Yamafuji D, Furuta T, Sakakibara F, Yamagishi T.-A. Chem. Commun. 2014; 50: 5774
- 7 Cragg PJ, Sharma K. Chem. Soc. Rev. 2012; 41: 597
- 8 Ogoshi T. J. Inclusion Phenom. Macrocyclic Chem. 2011; 72: 247
- 9 Xue M, Yang Y, Chi X, Zhang Z, Huang F. Acc. Chem. Res. 2012; 45: 1294
- 10 Ogoshi T, Yamagishi T.-A. Bull. Chem. Soc. Jpn. 2013; 86: 312
- 11 Ogoshi T, Yamagishi T.-A. Eur. J. Org. Chem. 2013; 2961
- 12 Zhang HC, Liu ZN, Xin FF, Hao AY. Chin. J. Org. Chem. 2012; 32: 219
- 13 Zhang H, Zhao Y. Chem. Eur. J. 2013; 19: 16862
- 14 Cao D, Meier H. Asian J. Org. Chem. 2014; 244; and references therein
- 15 Strutt NL, Zhang H, Schneebeli ST, Stoddart JF. Acc. Chem. Res. 2014; 47: 2631
- 16 Hu X.-B, Chen Z, Chen L, Zhang L, Hou J.-L, Li Z.-T. Chem. Commun. 2012; 48: 10999
- 17 Yang Y, Wang K, Zhang X, Chen D, Song N. Faming Zhuanli Shenqing CN 103396298 A2 0131120, 2013
- 18 Kou Y, Cao D, Tao H, Wang L, Liang J, Chen Z, Meier H. J. Inclusion Phenom. Macrocyclic Chem. 2013; 77: 279
- 19 Han C, Ma F, Zhang Z, Xia B, Yu Y, Huang F. Org. Lett. 2010; 12: 4360
- 20 Nierengarten I, Guerra S, Holler M, Karmazin-Brelot L, Barberá J, Deschenaux R, Nierengarten J.-F. Eur. J. Org. Chem. 2013; 3675
- 21 Yao Y, Li J, Dai J, Chi X, Xue M. RSC Adv. 2014; 4: 9039
- 22 Chen W, Zhang Y, Li J, Lou X, Yu Y, Jia X, Li C. Chem. Commun. 2013; 49: 7956
- 23 Ma Y, Jang J, Li J, Chi X, Xue M. RSC Adv. 2013; 3: 23953
- 24 Wang K, Tan L.-L, Chen D.-X, Song N, Xi G, Zhang SX.-A, Li C, Yang Y.-W. Org. Biomol. Chem. 2012; 10: 9405
- 25 Ogoshi T, Demachi K, Masaki K, Yamagishi T.-A. Chem. Commun. 2013; 49: 3952
- 26 Ogoshi T, Ueshima N, Sakakibara F, Yamagishi T.-A, Haino T. Org. Lett. 2014; 16: 2896
- 27 Ma Y, Chi X, Yan X, Liu J, Yao Y, Chen W, Huang F, Hou J.-L. Org. Lett. 2012; 14: 1532
- 28 Ogoshi T, Kayama H, Yamafuji D, Aoki T, Yamagishi T.-A. Chem. Sci. 2012; 3: 3221
- 29 Xia W, Hu X.-Y, Chen Y, Lin C, Wang L. Chem. Commun. 2013; 49: 5085
- 30 Ogoshi T, Yamafuji D, Kotera D, Aoki T, Fujinami S, Yamagishi T.-A. J. Org. Chem. 2012; 77: 11146
- 31 Han C, Gao L, Yu G, Zhang Z, Dong S, Huang F. Eur. J. Org. Chem. 2013; 2529
- 32 Yu G, Tang G, Huang F. J. Mater. Chem. C 2014; 2: 6609
- 33 Lao K.-U, Yu C.-H. J. Comput. Chem. 2011; 32: 2716
- 34 Chi X, Xue M, Ma Y, Yan X, Huang F. Chem. Commun. 2013; 49: 8175
- 35 Ogoshi T, Kida K, Yamagishi T.-A. J. Am. Chem. Soc. 2012; 134: 20146
- 36 Yu G, Xue M, Zhang Z, Li J, Han C, Huang F. J. Am. Chem. Soc. 2012; 134: 13248
- 37 Chen L, Si W, Zhang L, Tang G, Li Z.-T, Hou J.-L. J. Am. Chem. Soc. 2013; 135: 2152
- 38 Yu G, Han C, Zhang Z, Chen J, Yan X, Zheng B, Liu S, Huang F. J. Am. Chem. Soc. 2012; 134: 8711
- 39 Barnes JC, Paton JD, Damewood JR. Jr, Mislow K. J. Org. Chem. 1981; 46: 4975
- 40 Ogoshi T, Masaki K, Shiga R, Kitajima K, Yamagishi T.-A. Org. Lett. 2011; 13: 1264
- 41 Peerannawar SR, Gejji SP. Phys. Chem. Chem. Phys. 2012; 14: 8711
- 42 Gejji SP. personal communication
- 43 Han C, Zhang Z, Chi X, Zhang M, Yu G, Huang F. Acta Chim. Sin. (Engl. Ed.) 2012; 70: 1775
- 44 Adnikari BB, Fujii A, Schramm MP. Eur. J. Org. Chem. 2014; 2972
- 45 Xia D, Yu G, Li J, Huang F. Chem. Commun. 2014; 50: 3606
- 46 Wang P, Yan X, Huang F. Chem. Commun. 2014; 50: 5017
- 47 Zhou Q, Jiang H, Chen R, Qiu F, Dai G, Han D. Chem. Commun. 2014; 50: 10658
- 48 Li C, Shu X, Li J, Fan J, Chen Z, Wenig L, Jia X. Org. Lett. 2012; 14: 4126
- 49 Yang J, Yu G, Xia D, Huang F. Chem. Commun. 2014; 50: 3993
- 50 Ogoshi T, Yamafuji D, Aoki T, Yamagishi T.-A. Chem. Commun. 2012; 48: 6842
- 51a Cao Y, Hu X.-Y, Li Y, Zou X, Xiong S, Lin C, Shen Y.-Z, Wang L. J. Am. Chem. Soc. 2014; 136: 10762
- 51b Cao Y, Li Y, Hu X.-Y, Zou X, Xiong S, Lin C, Wang L. Chem. Mater. 2015; 27: 1110
- 52 Hou X, Ke C, Cheng C, Song N, Blackburn AK, Sarjeant AA, Botros YY, Yang Y.-W, Stoddart JF. Chem. Commun. 2014; 50: 6196
- 53 Yu G, Zhou X, Zhang Z, Han C, Mao Z, Gao C, Huang F. J. Am. Chem. Soc. 2012; 134: 19489
- 54 See also: Ge Z, Liu S. Chem. Soc. Rev. 2013; 42: 7289
- 55 Ji X, Chen J, Chi X, Huang F. ACS Macro Lett. 2014; 3: 110
- 56 Huang X, Du X. ACS Appl. Mater. Interfaces 2014; 6: 20430
- 57 Fan J, Deng H, Li J, Jia X, Li C. Chem. Commun. 2013; 49: 6343
- 58 Duan Q, Cao Y, Li Y, Hu X, Xiao T, Lin C, Pan Y, Wang L. J. Am. Chem. Soc. 2013; 135: 10542
- 59 Zhou J, Chen M, Diao G. Chem. Commun. 2014; 50: 11954
- 60 Yao Y, Jie K, Zhou Y, Xue M. Tetrahedron Lett. 2014; 55: 3195
- 61 Yao Y, Jie K, Zhou Y, Xue M. Chem. Commun. 2014; 50: 5072
- 62 Ogoshi T, Sueto R, Yoshikoshi K, Yamagishi T.-A. Chem. Commun. 2014; 50: 15209
- 63 Liu L, Cao D, Jin Y, Tao H, Kou Y, Meier H. Org. Biomol. Chem. 2011; 9: 7007
- 64 Gribble GW, Nutaitis CF. Tetrahedron Lett. 1985; 26: 6023
- 65 Yang T.-F, Chiu KY, Cheng H.-C, Lee JW, Kuo MY, Su YO. J. Org. Chem. 2012; 77: 8627
- 66 Ito A, Yokoyama Y, Aihara R, Fukui K, Eguchi S, Shizu K, Sato T, Tanaka K. Angew. Chem. Int. Ed. 2010; 49: 8205 ; Angew. Chem. 2010, 122, 8381
- 67 See also: Ide T, Takeuchi D, Osaka K, Sato T, Higuchi M. J. Org. Chem. 2011; 76: 9504
- 68 Takeuchi D, Asano I, Osakada K. J. Org. Chem. 2006; 71: 8614
- 69 Schneebeli ST, Cheng C, Hartlieb KJ, Strutt NL, Sarjeant AA, Stern CL, Stoddart JF. Chem. Eur. J. 2013; 19: 3860
See also: