Subscribe to RSS
DOI: 10.1055/s-0034-1378843
Triethylamine–Mesyl Chloride/Thionyl Chloride: A Reagent for Hydrodebromination of Diquinane-Based α-Bromo-γ-Lactones
Publication History
Received: 12 March 2015
Accepted after revision: 08 May 2015
Publication Date:
02 July 2015 (online)
Abstract
A selective debromination of tetracyclic dibrominated bis-γ-lactones in the presence of triethylamine and mesyl chloride is reported. Both mesyl chloride and triethylamine are essential for the debromination process. The reduction is proposed to proceed through halophilic substitution of electrophilic bromine. The source of the halophile in this reaction is believed to be triethyl(mesyl)ammonium chloride. The nonoccurrence of debromination in dibromo bis-γ-lactones with tosyl chloride and triethylamine as reagents suggests that the formation of a source of well-dissociated chloride ions during the reaction is necessary. Furthermore, selective debromination of dibrominated bis-γ-lactones was also achieved by using pyridine–thionyl chloride as a reagent. Alternatively, potassium chloride–[18-crown-6] was demonstrated to be a suitable source of chloride ion for the reduction of bromolactones.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1378843.
- Supporting Information
-
References
- 1a March J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. 4th ed. Wiley; New York: 1992
- 1b Clayden JP, Greeves N, Warren S, Wothers PD. Organic Chemistry . Oxford University Press; Oxford: 2001
- 1c Schmid GH, Garratt DG. Tetrahedron 1985; 41: 4787
- 1d Michalski J, Mikwajczyk M. Tetrahedron 1966; 22: 3055
- 1e Braje WM, Holzgrefe J, Wartchow R, Hoffmann HM. R. Angew. Chem. Int. Ed. 2000; 39: 2085
- 2a Gemal AL, Luche JL. Tetrahedron Lett. 1980; 21: 3195
- 2b Mandal AK, Nijasure AM. Synlett 1990; 554
- 2c Baciocchi E, Lillocci C. J. Chem. Soc., Perkin Trans. 2 1973; 38
- 2d Sazonov PK, Artamkina GA, Khrustalev VN, Antipin MYu, Beletskaya IP. J. Organomet. Chem. 2003; 681: 59
- 2e Gronert S, Garver JM, Nichols CM, Worker BB, Bierbaum VM. J. Org. Chem. 2014; 79: 11020
- 2f Enrico B, Alberto S. Ric. Sci. 1969; 39: 83
- 2g Zhang Y. THEOCHEM 2010; 961: 6
- 3a Winstein S, Pressman D, Young WG. J. Am. Chem. Soc. 1939; 61: 1645
- 3b Hine J, Brader WH. Jr. J. Am. Chem. Soc. 1955; 77: 361
- 3c Schubert WM, Steadly H, Rabinovitch BS. J. Am. Chem. Soc. 1955; 77: 5755
- 3d Bunnett J. Acc. Chem. Res. 1972; 5: 139
- 3e Zefirov NS, Makhon’kov DI. Chem. Rev. 1982; 82: 615
- 3f Grinblat J, Ben-Zion M, Hoz S. J. Am. Chem. Soc. 2001; 123: 10738
- 3g Moser DF, Bosse T, Olson J, Moser JL, Guzei IA, West R. J. Am. Chem. Soc. 2002; 124: 4186
- 3h Petko KI, Kot SY, Yagupolskii LM. J. Fluorine Chem. 2008; 129: 1119
- 4a Nicolaou KC, Baran PS, Zhong Y.-L, Choi H.-S, Fong KC, He Y, Yoon WH. Org. Lett. 1999; 1: 883
- 4b Woo JC. S, Fenster E, Dake GR. J. Org. Chem. 2004; 69: 8984
- 4c Jasti R, Rychnovsky SD. Org. Lett. 2006; 8: 2175
- 4d Reeves JT, Song JJ, Tan Z, Lee H, Yee NK, Senanayake CH. Org. Lett. 2007; 9: 1875
- 4e Darwish A, Chong JM. J. Org. Chem. 2007; 72: 1507
- 4f Counceller CM, Eichman CC, Wray BC, Stambuli JP. Org. Lett. 2008; 10: 1021
- 4g Park BR, Kim KH, Kim JN. Tetrahedron Lett. 2010; 51: 6568
- 4h Sach NW, Richter DT, Cripps S, Tran-Dubé M, Zhu H, Huang B, Cui J, Sutton SC. Org. Lett. 2012; 14: 3886
- 5a Khan FA, Rao CN. Tetrahedron Lett. 2006; 47: 7567
- 5b Khan FA, Rao CN. Tetrahedron Lett. 2009; 50: 5751
- 6a Relles HM. J. Org. Chem. 1973; 58: 1570
- 6b Ghesner I, Piers WE, Parvez M, McDonald R. Chem. Commun. 2005; 2480
- 6c Arrieta A, Palomo C. Synthesis 1983; 472
- 6d Arrieta A, García T, Palomo C. Synth. Commun. 1982; 12: 1139
- 6e Anies C, Pancrazi A, Lallemand J.-Y. Tetrahedron Lett. 1995; 36: 2075
- 6f Niwa H, Yoshida Y, Hasegawa T, Yamada K. Tetrahedron 1991; 47: 2155
- 6g Schwartz A, Madan P. J. Org. Chem. 1986; 51: 5463
- 6h Bucher G. Eur. J. Org. Chem. 2003; 3868
- 7a Kaniko C, Sugimoto A, Tanaka S. Synthesis 1974; 876
- 7b Deardorff DR, Myles DC. Org Synth. Coll. Vol. VIII . Wiley; London: 1993: 13
- 7c Korach M, Nielsen DR, Rideout WH. Org Synth. Coll. Vol. V . Wiley; London: 1973: 414
- 7d Kondo K, Matsumoto M. J. Chem. Soc., Chem. Commun. 1972; 1332a
- 7e Nakata K, Kobayashi Y. Org. Lett. 2005; 7: 1319
- 8a Khan FA, Dash J, Sudheer C, Sahu N, Parasuraman K. J. Org. Chem. 2005; 70: 7565
- 8b Khan FA, Dash J. J. Am. Chem. Soc. 2002; 124: 2424
- 9 Rao CN, Khan FA. Org. Biomol. Chem. 2015; 13: 2768
- 10a Khan FA, Sahu N. J. Catal. 2005; 231: 438
- 10b Khan FA, Prabhudas B, Dash J, Sahu N. J. Am. Chem. Soc. 2000; 122: 9558
- 11 Morita J, Nakatsuji H, Misaki T, Tanabe Y. Green Chem. 2005; 7: 711
- 12 Mongin F, Mongin O, Trécourt F, Godard A, Quéguiner G. Tetrahedron Lett. 1996; 37: 6695
- 13a King JF, du Manoir JR. J. Am. Chem. Soc. 1975; 97: 2566
- 13b Cram DJ, Trepka RD, Janiak PSt. J. Am. Chem. Soc. 1966; 88: 2749
- 13c Truce WE, Campbell RW. J. Am. Chem. Soc. 1966; 88: 3599
- 13d Lee TW. S, King JF. J. Am. Chem. Soc. 1969; 91: 6524
- 13e Farng LP. O, Kice JL. J. Am. Chem. Soc. 1981; 103: 1137
- 13f King JF, Lan JY. L, Skonieczny S. J. Am. Chem. Soc. 1992; 114: 1743
- 13g Opitz G. Angew. Chem., Int. Ed. Engl. 1967; 6: 107
- 13h Ortica F, Pohlers G, Coenjarts C, Bejan EV. Cameron J. F, Zampini A, Haigh M, Scaiano JC. Org. Lett. 2000; 2: 3591
- 14a Ding R, He Y, Wang X, Xu J, Chen Y, Feng M, Qi C. Molecules 2011; 16: 5665
- 14b Vembu N, Arunmozhithevan C. Chem. Sin. 2013; 4 (02) 49
- 15 The debromination product 20 is highly polar, so that the compound is insoluble in most solvents. Consequently, compound 20 was characterized as its acetate derivative 21.