Subscribe to RSS
DOI: 10.1055/s-0034-1379537
Organic Fluorine as a Hydrogen-Bond Acceptor: Recent Examples and Applications
Publication History
Received: 21 May 2014
Accepted after revision: 22 October 2014
Publication Date:
17 November 2014 (online)
Abstract
For more than three decades, the ability of a fluorine atom involved in a C–F bond to act as a hydrogen-bond acceptor has been a controversial issue. Throughout the years, more and more evidence has been published to support this hypothesis and it is now difficult to doubt the existence of the hydrogen bond with organic fluorine. However, since this interaction has low binding energies, it is sometimes difficult to clearly demonstrate its presence or effect in a system. In the present review, only the most recent examples from the literature are presented and the different techniques used to prove the presence of these C–F···H–X hydrogen bonds are compared and discussed according to the accepted criteria for hydrogen bonding detailed by a recent IUPAC committee. Even with its weak interaction energy, hydrogen bonds to organic fluorine have the potential to affect properties of practical systems in different spheres of chemistry. All the recent examples of such effects are highlighted.
1 Introduction
2 Properties
3 C(sp2)–F
3.1 O–H as Donor
3.2 N–H as Donor
3.3 C(sp2)–H as Donor
3.4 C(sp3)–H as Donor
4 C(sp3)–F
4.1 O–H as Donor
4.2 N–H as Donor
4.3 C(sp2)–H as Donor
4.4 C(sp3)–H as Donor
5 Conclusion
-
References
- 1 These authors contributed equally to the work.
- 2a Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ. Pure Appl. Chem. 2011; 83: 1619
- 2b Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ. Pure Appl. Chem. 2011; 83: 1637
- 3 Pauling L. The Nature of the Chemical Bond . 3rd ed. Cornell University Press; Ithaca: 1960
- 4a Murray-Rust P, Stallings WC, Monti CT, Prestone RK, Glusker JP. J. Am. Chem. Soc. 1983; 105: 3206
- 4b Shimoni L, Glusker JP. Struct. Chem. 1994; 5: 383
- 5 Howard JA. K, Hoy VJ, O’Hagan D, Smith GT. Tetrahedron 1996; 52: 12613
- 6 Dunitz JD, Taylor R. Chem. Eur. J. 1997; 3: 89
- 7 Desiraju GR. Acc. Chem. Res. 2002; 35: 565
- 8 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 9 Schneider H.-J. Chem. Sci. 2012; 3: 1381
- 10 Pallan PS, Egli M. J. Am. Chem. Soc. 2009; 131: 12548
- 11 Cormanich RA, Freitas MP, Tormena CF, Rittner R. RSC Adv. 2012; 2: 4169
- 12 Zhang G, He W, Chen D. Mol. Phys. 2014; 1736
- 13 Rosenberg RE. J. Phys. Chem. A 2012; 116: 10842
- 14 Dalvit C, Invernizzi C, Vulpetti A. Chem. Eur. J. 2014; 20: 11058
- 15 Karanam M, Choudhury AR. Cryst. Growth Des. 2013; 13: 4803
- 16 Dalvit C, Vulpetti A. ChemMedChem 2011; 6: 104
- 17 Dalvit C, Vulpetti A. ChemMedChem 2012; 7: 262
- 18 Panini P, Chopra D. CrystEngComm 2013; 15: 3711
- 19 Egli M. Acc. Chem. Res. 2012; 45: 1237
- 20 Silla JM, Duarte CJ, Rittner R, Freitas MP. RSC Adv. 2013; 3: 25765
- 21 Takemura H, Kotoku M, Yasutake M, Shinmyozu T. Eur. J. Org. Chem. 2004; 2019
- 22 Takemura H, Ueda R, Iwanaga T. J. Fluorine Chem. 2009; 130: 684
- 23 The coupling constant decreases with the use of more polar solvents because of the competition between fluorine and the solvent as hydrogen-bond acceptors.
- 24a Fonseca TA. O, Freitas MP, Cormanich RA, Ramalho TC, Tormena CF, Rittner R. Beilstein J. Org. Chem. 2012; 8: 112
- 24b Fonseca TA. O, Ramalho TC, Freitas MP. Magn. Reson. Chem. 2012; 50: 551
- 25 Kumari D, Hebbar S, Suryaprakash N. Chem. Phys. Lett. 2012; 525-526: 129
- 26 Manjunatha Reddy GN, Vasantha Kumar MV, Guru Row TN, Suryaprakash N. Phys. Chem. Chem. Phys. 2010; 12: 13232
- 27 Jin L.-M, Xu X, Lu H, Cui X, Wojtas L, Zhang XP. Angew. Chem. Int. Ed. 2013; 52: 5309
- 28 Khakshoor O, Wheeler SE, Houk KN, Kool ET. J. Am. Chem. Soc. 2012; 134: 3154
- 29 Morales JC, Kool ET. Nat. Struct. Biol. 1998; 5: 950
- 30 Scerba MT, Leavitt CM, Diener ME, DeBlase AF, Guasco TL, Siegler MA, Bair N, Johnson MA, Lectka T. J. Org. Chem. 2011; 76: 7975
- 31 Rathore RS, Karthikeyan NS, Alekhya Y, Sathiyanarayana K, Aravindan PG. J. Chem. Sci. 2011; 123: 403
- 32 Kaur G, Panini P, Chopra D, Choudhury AR. Cryst. Growth Des. 2012; 12: 5096
- 33 Karthik G, Krushna PV, Srinivasan A, Chandrashekar TK. J. Org. Chem. 2013; 78: 8496
- 34 Nath B, Baruah JB. Cryst. Growth Des. 2013; 13: 5146
- 35 Ridout J, Probert MR. Cryst. Growth Des. 2013; 13: 1943
- 36 Shang J, Gallagher NM, Bie F, Li Q, Che Y, Wang Y, Jiang H. J. Org. Chem. 2014; 79: 5134
- 37 de Rezende FM. P, Moreira MA, Cormanich RA, Freitas MP. Beilstein J. Org. Chem. 2012; 8: 1227
- 38 Andrade LA. F, Silla JM, Duarte CJ, Rittner R, Freitas MP. Org. Biomol. Chem. 2013; 11: 6766
- 39 Graton J, Wang Z, Brossard A.-M, Monteiro DG, Le Questel J.-Y, Linclau B. Angew. Chem. Int. Ed. 2012; 51: 6176
- 40 Giuffredi GT, Gouverneur V, Bernet B. Angew. Chem. Int. Ed. 2013; 52: 10524
- 41 Struble MD, Kelly C, Siegler MA, Lectka T. Angew. Chem. Int. Ed. 2014; 53: 8924
- 42 Champagne PA, Pomarole J, Thérien M.-È, Benhassine Y, Beaulieu S, Legault CY, Paquin J.-F. Org. Lett. 2013; 15: 2210
- 43a Champagne PA, Saint-Martin A, Drouin M, Paquin J.-F. Beilstein J. Org. Chem. 2013; 9: 2451
- 43b Champagne, P. A.; Drouin, M.; Legault, C. Y.; Audubert, C.; Paquin, J.-F. J. Fluorine Chem. 2014, in press; DOI: 10.1016/j.jfluchem.2014.08.018.
- 44 Champagne, P. A.; Benhassine, Y.; Desroches, J.; Paquin, J.-F. Angew. Chem. Int. Ed. 2014, in press; DOI: 10.1002/anie.201406088.
- 45 Begue JP, Bonnet-Delpon D, Crousse B. Synlett 2004; 18
- 46 Chaudhari SR, Mogurampelly S, Suryaprakash N. J. Phys. Chem. B 2013; 117: 1123
- 47 VenkatRamani S, Pascualini ME, Ghiviriga I, Abboud KA, Veige AS. Polyhedron 2013; 64: 377
- 48 Batra VK, Pedersen LC, Beard WA, Wilson SH, Kashemirov BA, Upton TG, Goodman MF, McKenna CE. J. Am. Chem. Soc. 2010; 132: 7617
- 49 McKenna CE, Kashemirov BA, Upton TG, Batra VK, Goodman MF, Pedersen LC, Beard WA, Wilson SH. J. Am. Chem. Soc. 2007; 129: 15412
- 50 Prakash GK. S, Wang F, Rahm M, Shen J, Ni C, Haiges R, Olah GA. Angew. Chem. Int. Ed. 2011; 50: 11761
- 51 Spada L, Gou Q, Vallejo-Lopez M, Lesarri A, Cocinero EJ, Caminati W. Phys. Chem. Chem. Phys. 2014; 16: 2149
- 52 Durie AJ, Fujiwara T, Cormanich R, Bühl M, Slawin AM. Z, O’Hagan D. Chem. Eur. J. 2014; 20: 6259
- 53 Watts JK, Martín-Pintado N, Gómez-Pinto I, Schwartzentruber J, Portella G, Orozco M, González C, Damha MJ. Nucl. Acids Res. 2010; 38: 2498
- 54 Anzahaee MY, Watts JK, Alla NR, Nicholson AW, Damha MJ. J. Am. Chem. Soc. 2011; 133: 728
- 55 Martín-Pintado N, Yahyaee-Anzahaee M, Deleavey GF, Portella G, Orozco M, Damha MJ, González C. J. Am. Chem. Soc. 2013; 135: 5344
- 56 Dugovic B, Leumann CJ. J. Org. Chem. 2014; 79: 1271
- 57 Li Y, Li F, Chen Z. J. Am. Chem. Soc. 2012; 134: 11269
- 58 Gou Q, Feng G, Evangelisti L, Vallejo-Lopez M, Lesarri A, Cocinero EJ, Caminati W. Phys. Chem. Chem. Phys. 2013; 15: 6714
- 59 Lu N, Ley RM, Cotton CE, Chung W.-C, Francisco JS, Negishi E.-i. J. Phys. Chem. A 2013; 117: 8256
- 60 Bartolomé C, Villafañe F, Martín-Alvarez JM, Martínez-Ilarduya JM, Espinet P. Chem. Eur. J. 2013; 19: 3702
- 61 Scerba MT, Bloom S, Haselton N, Siegler M, Jaffe J, Lectka T. J. Org. Chem. 2012; 77: 1605
- 62 Struble MD, Strull J, Patel K, Siegler MA, Lectka T. J. Org. Chem. 2014; 79: 1
- 63 Gore KR, Harikrishna S, Pradeepkumar PI. J. Org. Chem. 2013; 78: 9956
- 64 Mitani M, Mohri J.-i, Yoshida Y, Saito J, Ishii S, Tsuru K, Matsui S, Furuyama R, Nakano T, Tanaka H, Kojoh S.-i, Matsugi T, Kashiwa N, Fujita T. J. Am. Chem. Soc. 2002; 124: 3327
- 65 Kui SC. F, Zhu N, Chan MC. W. Angew. Chem. Int. Ed. 2003; 42: 1628
- 66 Chan MC. W, Kui SC. F, Cole JM, McIntyre GJ, Matsui S, Zhu N, Tam K.-H. Chem. Eur. J. 2006; 12: 2607
- 67 So L.-C, Liu C.-C, Chan MC. W, Lo JC. Y, Sze K.-H, Zhu N. Chem. Eur. J. 2012; 18: 565
- 68 Liu C.-C, So L.-C, Lo JC. Y, Chan MC. W, Kaneyoshi H, Makio H. Organometallics 2012; 31: 5274