Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2015; 47(11): 1560-1566
DOI: 10.1055/s-0034-1379899
DOI: 10.1055/s-0034-1379899
paper
Palladium/N-Heterocyclic Carbene Catalyzed Mono- and Double-Cyanation of Aryl Halides Using Potassium Ferrocyanide Trihydrate under Aerobic Conditions
Further Information
Publication History
Received: 23 December 2014
Accepted after revision: 02 February 2015
Publication Date:
30 March 2015 (online)
Abstract
A practical palladium/N-heterocyclic carbene catalyzed procedure for the mono- and double-cyanation of aryl halides is described using inexpensive, easy-to-handle and nontoxic potassium ferrocyanide trihydrate {K4[Fe(CN)6]·3H2O} as the cyanating agent. The reaction does not require an anhydrous solvent, or the exclusion of air or moisture. A variety of electron-rich and electron-deficient aryl halides are efficiently converted into their corresponding nitriles and dicarbonitriles.
Key words
cyanation - N-heterocyclic carbene - palladium catalysis - potassium ferrocyanide - aerobic conditionsSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1379899.
- Supporting Information
-
References
- 1a Kleeman A, Engel J, Kutscher B, Reichert D. Pharmaceutical Substances: Syntheses, Patents, Applications . 4th ed. Thieme; Stuttgart: 2001
- 1b Sriram D, Yogeeswari P. Medicinal Chemistry . Pearson Education; Munchen: 2007
- 2a Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. VCH; Weinheim: 1989
- 2b Rappoport Z. Chemistry of the Cyano Group . Wiley; London: 1970
- 2c Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
- 3a Lindley J. Tetrahedron 1984; 40: 1433
- 3b Bacon RG. R, Hill HA. O. J. Chem. Soc. 1964; 1097
- 3c Mowry DT. Chem. Rev. 1948; 42: 189
- 5a Stevenson AC. Ind. Eng. Chem. 1949; 41: 1846
- 5b Denton WI, Bishop RB, Caldwell HP, Chapman HD. Ind. Eng. Chem. 1950; 42: 796
- 5c Martin A, Wolf GU, Steinike U, Lucke B. J. Chem. Soc., Faraday Trans. 1998; 94: 2227
- 6a Arvela RK, Leadbeater NE. J. Org. Chem. 2003; 68: 9122
- 6b Sakakibara Y, Ido Y, Sasaki K, Sakai M, Uchino N. Bull. Chem. Soc. Jpn. 1993; 66: 2776
- 6c Cassar L, Ferrara S, Foa M. Adv. Chem. Ser. 1974; 132: 252
- 6d Cassar L, Foa M, Montanari F, Marinelli GP. J. Organomet. Chem. 1979; 173: 335
- 6e Sakakibara Y, Okuda F, Shimoyabashi A, Kirino K, Sakai M, Uchino N, Takagi K. Bull. Chem. Soc. Jpn. 1988; 61: 1985
- 6f Takagi K, Sakakibara Y. Chem. Lett. 1989; 1957
- 7a Cristau H.-J, Ouali A, Spindler J.-F, Taillefer M. Chem. Eur. J. 2005; 11: 2483
- 7b Zanon J, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 2890
- 7c Wu JX, Beck B, Ren RX. Tetrahedron Lett. 2002; 43: 387
- 7d Schareina T, Zapf A, Magerlein W, Muller N, Beller M. Chem. Eur. J. 2007; 13: 6249
- 7e Schareina T, Zapf A, Beller M. Tetrahedron Lett. 2005; 46: 2585
- 7f Schareina T, Zapf A, Cotte A, Gotta M, Beller M. Adv. Synth. Catal. 2011; 353: 777
- 7g Ren Y, Wang W, Zhao S, Tian X, Wang J, Yin W, Cheng L. Tetrahedron Lett. 2009; 50: 4595
- 7h Giachi G, Frediani M, Oberhauser W, Lamaty F, Martinez J, Colacino E. ChemSusChem 2014; 7: 919
- 8a Anderson BA, Bell EC, Ginah FO, Harn NK, Pagh LM, Wepsiec JP. J. Org. Chem. 1998; 63: 8224
- 8b Maligres PE, Waters MS, Fleitz F, Askin D. Tetrahedron Lett. 1999; 40: 8193
- 8c Jin F, Confalone PN. Tetrahedron Lett. 2000; 41: 3271
- 8d Sundermeier M, Zapf A, Mutyala S, Baumann W, Sans J, Weiss S, Beller M. Chem. Eur. J. 2003; 9: 1828
- 8e Chidambaram R. Tetrahedron Lett. 2004; 45: 1441
- 8f Yang C, Williams JM. Org. Lett. 2004; 6: 2837
- 8g Schareina T, Zapf A, Beller M. Chem. Commun. 2004; 1388
- 8h Schareina T, Zapf A, Beller M. J. Organomet. Chem. 2004; 689: 4576
- 8i Stazi F, Palmisano G, Turconi M, Santagostino M. Tetrahedron Lett. 2005; 46: 1815
- 8j Jensen RS, Gajare AS, Toyota K, Yoshifuji M, Ozawa F. Tetrahedron Lett. 2005; 46: 8645
- 8k Hatsuda M, Seki M. Tetrahedron 2005; 61: 9908
- 8l Weissman SA, Zewge D, Chen C. J. Org. Chem. 2005; 70: 1508
- 8m Grossman O, Gelman D. Org. Lett. 2006; 8: 1189
- 8n Pitts MR, McCormack P, Whittall J. Tetrahedron 2006; 62: 4705
- 8o Littke A, Soumeillant M, Kaltenback III RF, Cherney RJ, Tarby CM, Kiau S. Org. Lett. 2007; 9: 1711
- 8p Schareina T, Zapf A, Magerlein W, Muller N, Beller M. Tetrahedron Lett. 2007; 48: 1087
- 8q Shevlin M. Tetrahedron Lett. 2010; 51: 4833
- 8r Gerber R, Oberholzer M, Frech CM. Chem. Eur. J. 2012; 18: 2978
- 8s Ushkov AV, Grushin VV. J. Am. Chem. Soc. 2011; 133: 10999
- 8t Zhang J, Chen X, Hu T, Zhang Y, Xu K, Yu Y, Huang J. Catal. Lett. 2010; 139: 56
- 8u Chatterjee T, Dey R, Ranu BC. J. Org. Chem. 2014; 79: 5875
- 8v Takagi K, Okamoto T, Sakakibara Y, Oka S. Chem. Lett. 1973; 471
- 9a Fortman GC, Nolan SP. Chem. Soc. Rev. 2011; 40: 5151
- 9b Diez-Gonzalez S, Marion N, Nolan SP. Chem. Rev. 2009; 109: 3612
- 9c Arnold PL, Casely IJ. Chem. Rev. 2009; 109: 3599
- 9d Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
- 9e Dröge T, Glorius F. Angew. Chem. Int. Ed. 2010; 49: 6940
- 9f Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
- 9g Moore JL, Rovis T. Top. Curr. Chem. 2010; 291: 77
- 10a Cao C, Wang L, Cai Z, Zhang L, Guo J, Pang G, Shi Y. Eur. J. Org. Chem. 2011; 8: 1570
- 10b Yang L, Guan P, He P, Chen Q, Cao C, Peng Y, Shi Z, Pang G, Shi Y. Dalton Trans. 2012; 41: 5020
- 10c Yang L, Li Y, Chen Q, Du Y, Cao C, Pang G, Shi Y. Tetrahedron 2013; 69: 5178
- 10d Li Y, Liu G, Cao C, Wang S, Li Y, Pang G, Shi Y. Tetrahedron 2013; 69: 6241
- 10e Chen Q, Lv L, Yu M, Shi Y, Li Y, Pang G, Cao C. RSC Adv. 2013; 3: 18359
- 10f He P, Du Y, Liu G, Cao C, Shi Y, Zhang J, Pang G. RSC Adv. 2013; 3: 18345