Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(05): 613-618
DOI: 10.1055/s-0034-1379987
DOI: 10.1055/s-0034-1379987
letter
Palladium-Catalyzed Regioselective Synthesis of Oxygenated Biphenyls
Further Information
Publication History
Received: 08 November 2014
Accepted after revision: 17 December 2014
Publication Date:
26 January 2015 (online)
Abstract
Palladium-catalyst-mediated Michael addition reaction of arylboronic acids to cyclohexa-2,4-dienones followed by aromatization sequence in one-pot furnished several oxygenated biphenyl derivatives. Application of the developed methodology was successfully applied to the synthesis of biphenyl natural products aucuparin and 2′-hydroxy-3,4,5-trimethoxybiphenyl.
Key words
biphenyls - cyclohexa-2,4-dienones - arylboronic acid - tandem reactions - natural productsSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1379987.
- Supporting Information
-
References and Notes
- 1a Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
- 1b Hajduk PJ, Bures M, Praestgaard J, Fesik SW. J. Med. Chem. 2000; 3: 3443
- 1c Welsch ME, Snyder SA, Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 347
- 2a Aldemir H, Richarz R, Gulder TA. M. Angew. Chem. Int. Ed. 2014; 53: 8286
- 2b Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
- 2c Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193
- 3 Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
- 4a Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
- 4b Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 4c Bellina F, Carpita A, Rossi R. Synthesis 2004; 2419
- 4d Doucet H. Eur. J. Org. Chem. 2008; 2013
- 4e Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
- 4f Lee D.-H, Jin M.-J. Org. Lett. 2011; 13: 252
- 4g Fujihara T, Yoshida S, Terao J, Tsuji Y. Org. Lett. 2009; 11: 2121
- 4h Altenhoff G, Goddard R, Lehmann CW, Glorius F. Angew. Chem. Int. Ed. 2003; 42: 3690
- 4i Billingsley KL, Anderson KW, Buchwald SL. Angew. Chem. Int. Ed. 2006; 45: 3484
- 4j Bermejo A, Ros A, Fernández R, Lassaletta JM. J. Am. Chem. Soc. 2008; 130: 15798
- 5a Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
- 5b Denmark SE, Sweis R. Acc. Chem. Res. 2002; 35: 835
- 5c Denmark SE, Regens CS. Acc. Chem. Res. 2008; 41: 1486
- 5d Nakao Y, Sahoo AK, Imanaka H, Yada A, Hiyama T. Pure Appl. Chem. 2006; 78: 435
- 5e Molander GA, Iannazzo L. J. Org. Chem. 2011; 76: 9102
- 5f Gordillo I, de Jesús E, López-Mardomingo C. Org. Lett. 2006; 8: 3517
- 5g Sreedhar B, Kumar AS, Yada D. Synlett 2011; 1081
- 5h Srimani D, Sawoo S, Sarkar A. Org. Lett. 2007; 9: 3639
- 5i Zhang L, Wu J. J. Am. Chem. Soc. 2008; 130: 12250
- 5j Denmark SE, Smith RC, Chang W.-TT, Muhuhi JM. J. Am. Chem. Soc. 2009; 131: 3104
- 6a Heravi MM, Hajiabbasi P. Monatsh Chem. 2012; 143: 1575
- 6b Slagt VF, de Vries AH. M, de Vries JG, Kellogg RM. Org. Process Res. Dev. 2010; 14: 30 Some publications
- 6c Yoshikai N, Mashima H, Nakamura E. J. Am. Chem. Soc. 2005; 127: 17978
- 6d Ackermann L, Althammer A. Org. Lett. 2006; 8: 3457
- 6e Wolf C, Xu H. J. Org. Chem. 2008; 73: 162
- 6f Ghosh R, Sarkar A. J. Org. Chem. 2010; 75: 8283
- 7a Yet L. Negishi Cross-Coupling Reaction. Name Reactions for Homologations. John Wiley and Sons; New York: 2009. Part 1 70-99
- 7b Jin L, Lei A. Org. Biomol. Chem. 2012; 10: 6817
- 7c Milne JE, Buchwald SL. J. Am. Chem. Soc. 2004; 126: 13028
- 7d Xi Z, Zhou Y, Chen W. J. Org. Chem. 2008; 73: 8497
- 7e Luzung MR, Patel JS, Yin J. J. Org. Chem. 2010; 75: 8330
- 8a Chittimalla SK, Bandi C, Putturu S, Kuppusamy R, Boellaard KC, Tan DC. T, Lum DM. J. Eur. J. Org. Chem. 2014; 2565
- 8b Chittimalla SK, Kuppusamy R, Bandi C. Synlett 2014; 25: 1991
- 9a Parumala SK. R, Peddinti RK. Org. Lett. 2013; 15: 3546
- 9b Dohi T, Washimi N, Kamitanaka T, Fukushima K, Kita Y. Angew. Chem. Int. Ed. 2011; 50: 6142
- 9c Dohi T, Kamitanaka T, Watanabe S, Hu Y, Washimi N, Kita Y. Chem. Eur. J. 2012; 18: 13614
- 10a Kharasch MS, Tawney PO. J. Am. Chem. Soc. 1941; 63: 2308
- 10b Rodríguez C, Vázquez Á, Nudelman NS. ARKIVOC 2008; (vi): 140
- 10c Hamblett CL, Sloman DL, Kliman LT, Adams B, Ball RG, Stanton MG. Tetrahedron Lett. 2007; 48: 2079
- 10d Arai Y, Ueda K, Xie J, Masaki Y. Chem. Pharm. Bull. 2001; 49: 1609
- 10e Hudlicky T, Rinner U, Gonzalez D, Akgun H, Schilling S, Siengalewicz P, Martinot TA, Pettit GR. J. Org. Chem. 2002; 67: 8726
- 10f Spivey AC, Shukla L, Hayler JF. Org. Lett. 2007; 9: 891
- 11a Cho CS, Motofusa S, Ohe K, Uemura S. J. Org. Chem. 1995; 60: 883
- 11b Nishikata T, Yamamoto Y, Miyaura N. Angew. Chem. Int. Ed. 2003; 42: 2768
- 11c Nishikata T, Yamamoto Y, Miyaura N. Organometallics 2004; 23: 4317
- 11d Recently, another cationic catalysis was published: Gini F, Hessen B, Minnaard AJ. Org. Lett. 2005; 7: 5309
- 11e Nishikata T, Yamamoto Y, Miyaura N. Chem. Lett. 2005; 34: 720
- 11f Yamamoto T, Iizuka M, Ohta T, Ito Y. Chem. Lett. 2006; 35: 198
- 12 Hall DG In Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Hall DG. Wiley-VCH; Weinheim: 2005. 2nd ed. Chap. 1, 1-133
- 15 Upon decrease in Pd(OAc)2 loading to 0.05 equiv of 0.01 equiv, the reaction time slightly increased to 5 h without appreciable change in the outcome of product yield (ca. 85%).
- 16 Initial trials on the application of this protocol to 4,4-dimethoxycyclohexa-2,5-dienone (masked p-benzoquinone) and 4-methoxy-4-methylcyclohexa-2,5-dienone were not successful. Further studies are in progress.
- 17a Filler R, Saha R. Future Med. Chem. 2009; 1: 777
- 17b Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM. J. Med. Chem. 2013; 56: 1363
- 17c www.sciencedaily.com/releases/2013/01/130118064729.htm
- 18 Ahn S.-J, Lee C.-Y, Kim N.-K, Cheon C.-H. J. Org. Chem. 2014; 79: 7277
- 19a Erdtman H, Eriksson G, Norin T, Forsen S. Acta Chem. Scand. 1963; 17: 1151
- 19b Kokubun T, Harborne JB, Eagles J, Waterman PG. Phytochemistry 1995; 40: 57
- 19c Kim KH, Choi SU, Ha SK, Kim SY, Lee KR. J. Nat. Prod. 2009; 72: 2061
- 19d Hüttner C, Beuerle T, Scharnhop H, Ernst L, Beerhues L. J. Agric. Food Chem. 2010; 58: 11977
- 19e Chizzali C, Beerhues L. Beilstein J. Org. Chem. 2012; 8: 613
- 20 Bao K, Fan A, Dai Y, Zhang L, Zhang W, Cheng M, Yao X. Org. Biomol. Chem. 2009; 7: 5084
-
21
General Procedure for the Synthesis of Biphenyl Derivatives
Method A To a reaction vessel, arylboronic acid (3.0 equiv), cyclohexa-2,4-dienone (1.0 equiv), Pd(OAc)2 (0.1 equiv), 2,2′-bipyridine (0.4 equiv) and THF–AcOH (3 mL, 2:1) were added. The reaction vessel was sealed and heated to 60 °C for 4 h. During this time TLC analysis indicated the disappearance of cyclohexa-2,4-dienone. The crude product was then purified by silica gel flash chromatography using EtOAc–hexanes as eluent system to give biphenyl derivatives. Method B To a reaction vessel, Pd2(dba)3·CHCl3 (0.03 equiv), Ph3P (0.06 equiv), cyclohexa-2,4-dienone (1.0 equiv), methoxy arylboronic acid (2.0 equiv), Cs2CO3 (1.0 equiv), and toluene (2 mL) were added. The reaction vessel was sealed and stirred at 60 °C for 4 h. After the aqueous workup, the product was extracted with CH2Cl2. All the organic extracts were combined, dried over Na2SO4, filtered, and concentrated to give a residue. The residue was either purified at this step or is diluted with dioxane (8 mL) followed by addition of 4 M HCl in dioxane (2 mL for 0.5 mmol of cyclohexa-2,4-dienone). The reaction mixture was stirred for 2 h at r.t., solvents evaporated, and the crude residue was subjected to silica gel flash chromatography using EtOAc–hexanes to give biphenyl derivatives. 4,5-Dimethoxybiphenyl-3-ol (1a) 1H NMR (300 MHz, CDCl3): δ = 7.59–7.51 (m, 2 H), 7.47–7.38 (m, 2 H), 7.36–7.30 (m, 1 H), 6.86 (d, J = 1.8 Hz, 1H), 6.70 (d, J = 1.8 Hz, 1 H), 5.92 (s, 1 H), 3.95 (s, 3 H), 3.93 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 152.4 (C), 149.4 (C), 140.9 (C), 137.5 (C), 135.0 (C), 128.6 (2 × CH), 127.2 (CH), 126.9 (2 × CH), 106.9 (CH), 103.3 (CH), 61.0 (CH3), 55.9 (CH3). HRMS (ESI+): m/z calcd for C14H15O3 [M + H]: 231.1016; found: 231.1011; 3,5-Dimethoxybiphenyl-4-ol (Aucuparin, 15) 1H NMR (300 MHz, CDCl3): δ = 7.58–7.51 (m, 2 H), 7.46–7.37 (m, 2 H), 7.36–7.28 (m, 1 H), 6.80 (s, 2 H), 5.53 (br s, 1 H), 3.95 (s, 6 H). 13C NMR (75 MHz, CDCl3): δ = 147.3 (2 × C), 141.4 (C), 134.5 (C), 132.9 (C), 128.7 (2 × CH), 126.9 (3 × CH), 104.2 (2 × CH), 56.4 (2 × CH3). HRMS (ESI+): m/z calcd for C14H15O3 [M + H]: 231.1016; found: 231.1010; 2′-(Benzyloxy)-4,5-dimethoxybiphenyl-3-ol (17) 1H NMR (300 MHz, CDCl3): δ = 7.44–7.28 (m, 7 H), 7.08–7.00 (m, 2 H), 6.82 (d, J = 1.8 Hz, 2 H), 6.76 (d, J = 1.8 Hz,1 H), 5.75 (s, 1 H), 5.08 (s, 2 H), 3.94 (s, 3 H), 3.76 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 155.6 (C), 151.6 (C), 148.8 (C), 137.1 (C), 134.6 (C), 134.5 (C), 130.9 (C), 130.8 (CH), 128.5 (CH), 128.4 (2 × CH), 127.7 (CH), 127.2 (2 × CH), 121.4 (CH), 113.5 (CH), 109.3 (CH), 106.1 (CH), 70.6 (CH2), 61.0 (CH3), 55.7 (CH3). HRMS (ESI+): m/z calcd for C21H21O4 [M + H]: 337.1434; found: 337.1434; 2′-Hydroxy-3,4,5-trimethoxy-biphenyl (19) 1H NMR (300 MHz, CDCl3): δ = 7.30–7.27 (m, 1 H), 7.26–7.23 (m, 1 H), 7.01–6.98 (m, 2 H), 6.65 (s, 2 H), 5.31 (s, 1 H), 3.91 (s, 3 H), 3.89 (s, 6 H). 13C NMR (75 MHz, CDCl3): δ = 154.0 (2 × C), 152.4 (C), 137.7 (C), 132.4 (C), 129.9 CH), 129.2 (CH), 128.1 (C), 120.7 (CH), 115.7 (CH), 106.1 (2 × CH), 60.9 (CH3), 56.2 (2 × CH3). HRMS (ESI+): m/z calcd for C15H17O4 [M + H]: 261.1121; found: 261.1120.
Reviews:
Some publications:
Reviews:
Some publications:
Reviews:
Reviews:
Some publications: