Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(09): 1238-1242
DOI: 10.1055/s-0034-1380461
DOI: 10.1055/s-0034-1380461
letter
Zn(salen)-Catalyzed Enantioselective Phenyl Transfer to Aldehydes and Ketones with Organozinc Reagent
Further Information
Publication History
Received: 26 January 2015
Accepted after revision: 27 February 2015
Publication Date:
20 March 2015 (online)
Abstract
A chiral zinc complex of salen was found to be an efficient catalyst for the phenyl transfer of organozinc reagent to aromatic aldehydes and ketones. High enantioselectivities were obtained in reactions of both aromatic aldehydes and ketones (up to 97% and 92% ee, respectively).
-
References and Notes
- 1a Harms AF, Nauta WT. J. Med. Pharm. Chem. 1960; 2: 57
- 1b Meguro K, Aizawa M, Sohda T, Kawamatsu Y, Nagaoka A. Chem. Pharm. Bull. 1985; 33: 3787
- 1c Toda F, Tanaka K, Koshiro K. Tetrahedron: Asymmetry 1991; 2: 873
- 1d Stanev S, Rakovska R, Berova N, Snatzke G. Tetrahedron: Asymmetry 1995; 6: 183
- 1e Botta M, Summa V, Corelli F, Di Pietro G, Lombardi P. Tetrahedron: Asymmetry 1996; 7: 1263
- 2a Bolm C, Hermanns N, Hildebrand JP, Muñiz K. Angew. Chem. Int. Ed. 2000; 39: 3465
- 2b Bolm C, Kesselgruber M, Hermanns N, Hilderbrand JP. Angew. Chem. Int. Ed. 2001; 40: 1488
- 2c Bolm C, Rudolph J. J. Am. Chem. Soc. 2002; 124: 14850
- 2d Rudolph J, Hermanns N, Bolm C. J. Org. Chem. 2004; 69: 3997
- 3a Binder CM, Singaram B. Org. Prep. Proced. Int. 2011; 43: 139
- 3b Paixão MW, Braga AL, Lüdtke DS. J. Braz. Chem. Soc. 2008; 19: 813
- 3c Schmidt F, Stemmler RT, Rudolph J, Bolm C. Chem. Soc. Rev. 2006; 35: 454
- 3d Bolm C, Hildebrand JP, Muniz K, Hermanns N. Angew. Chem. Int. Ed. 2001; 40: 3284
- 3e Pu L, Yu H.-B. Chem. Rev. 2001; 101: 757
- 4a Song X, Hua Y.-Z, Shi J.-G, Sun P.-P, Wang M.-C, Chang J. J. Org. Chem. 2014; 79: 6087
- 4b Jia X, Lin A, Mao Z, Zhu C, Cheng Y. Molecules 2011; 16: 2971
- 4c Hatano M, Mizuno T, Ishihara K. Tetrahedron 2011; 67: 4417
- 4d Hatano M, Gouzu R, Mizuno T, Abe H, Yamada T, Ishihara K. Catal. Sci. Technol. 2011; 1: 1149
- 4e Godoi M, Alberto EE, Paixão MW, Soares LA, Schneider PH, Braga AL. Tetrahedron 2010; 66: 1341
- 4f Salvi L, Kim JG, Walsh PJ. J. Am. Chem. Soc. 2009; 131: 12483
- 4g Yang X.-F, Hirose T, Zhang G.-Y. Tetrahedron: Asymmetry 2009; 20: 415
- 4h Huang X, Wu L, Xu J, Zong L, Hu H, Cheng Y. Tetrahedron Lett. 2008; 46: 6823
- 4i Rodríguez-Escrich S, Reddy KS, Jimeno C, Colet G, Rodríguez-Escrich C, Solà L, Vidal-Ferran A, Pericàs MA. J. Org. Chem. 2008; 73: 5340
- 4j Wang M.-C, Wang X.-D, Ding X, Liu Z.-K. Tetrahedron 2008; 64: 2559
- 4k Jin M.-J, Sarkar SM, Lee D.-H, Qiu H. Org. Lett. 2008; 10: 1235
- 4l Wang M.-C, Zhang Q.-J, Zhao W.-X, Wang X.-D, Ding X, Jing T.-T, Song M.-P. J. Org. Chem. 2008; 73: 168
- 4m Sedelmeier J, Bolm C. J. Org. Chem. 2007; 72: 8859
- 4n Zhong J, Guo H, Wang M, Yin M, Wang M. Tetrahedron: Asymmetry 2007; 18: 734
- 4o Schmidt F, Rudolph J, Bolm C. Adv. Synth. Catal. 2007; 349: 703
- 4p Paixão MW, de Godoi M, Rhoden CR. B, Westermann B, Wessjohann LA, Lüdtke DS, Braga AL. J. Mol. Catal. A: Chem. 2007; 261: 120
- 4q Ahern T, Müller-Bunz H, Guiry PJ. J. Org. Chem. 2006; 71: 7596
- 4r Hatano M, Miyamoto T, Ishihara K. J. Org. Chem. 2006; 71: 6474
- 4s Lu G, Kwong FY, Ruan J.-W, Li Y.-M, Chan AS. C. Chem. Eur. J. 2006; 12: 4115
- 4t Wang M.-C, Zhao W.-X, Wang X.-D, Song M.-P. Synlett 2006; 3443
- 4u Braga AL, Milani P, Vargas F, Paixão MW, Sehnem JA. Tetrahedron: Asymmetry 2006; 17: 2793
- 4v Chai Z, Liu X.-Y, Wu X.-Y, Zhao G. Tetrahedron: Asymmetry 2006; 17: 2442
- 4w Wu P.-Y, Wu H.-L, Uang B.-J. J. Org. Chem. 2006; 71: 833
- 4x Qin Y.-C, Pu L. Angew. Chem. Int. Ed. 2006; 45: 273
- 4y Ito K, Tomita Y, Katsuki T. Tetrahedron Lett. 2005; 46: 6083
- 5a Hatano M, Miyamoto T, Ishihara K. Curr. Org. Chem. 2007; 11: 127
- 5b Hatano M, Ishihara K. Synthesis 2008; 1647
- 6 Dosa PI, Fu GC. J. Am. Chem. Soc. 1998; 120: 445
- 7a Betancort JM, García C, Walsh PJ. Synlett 2004; 749
- 7b Li H, García C, Walsh PJ. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5425
- 7c García C, Walsh PJ. Org. Lett. 2003; 5: 3641
- 8a Forrat VJ, Ramón DJ, Yus M. Tetrahedron: Asymmetry 2009; 20: 65
- 8b Forrat VJ, Ramón DJ, Yus M. Tetrahedron: Asymmetry 2008; 19: 537
- 8c Forrat VJ, Prieto O, Ramón DJ, Yus M. Chem. Eur. J. 2006; 12: 4431
- 8d Forrat VJ, Prieto O, Ramón DJ, Yus M. Chem. Eur. J. 2006; 12: 6727
- 8e Prieto O, Ramón DJ, Yus M. Tetrahedron: Asymmetry 2003; 14: 1955
- 9a Hatano M, Ishihara K. Chem. Rec. 2008; 8: 143
- 9b Hatano M, Miyamoto T, Ishihara K. Org. Lett. 2007; 9: 4535
- 10a Yang Y.-X, Liu Y, Zhang L, Jia Y.-E, Wang P, Zhuo F.-F, An X.-T, Da C.-S. J. Org. Chem. 2014; 79: 10696
- 10b Li K, Hu N, Luo R, Yuan W, Tang W. J. Org. Chem. 2013; 78: 6350
- 10c Sui Y.-Z, Zhang X.-C, Wu J.-W, Li S, Zhou J.-N, Li M, Fang W, Chan AS. C, Wu J. Chem. Eur. J. 2012; 18: 7486
- 10d Glynn D, Shannon J, Woodward S. Chem. Eur. J. 2010; 16: 1053
- 10e Zou S, Wu K.-H, Chen C.-A, Gau H.-M. J. Org. Chem. 2009; 74: 3500
- 10f Chen C.-A, Wu K.-H, Gau H.-M. Adv. Synth. Catal. 2008; 350: 1626
- 10g Chen C.-A, Wu K.-H, Gau H.-M. Angew. Chem. Int. Ed. 2007; 46: 5373
- 10h Tomita D, Wada R, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2005; 127: 4138
- 11a Cozzi PG, Papa A, Umani-Ronchi A. Tetrahedron Lett. 1996; 37: 4613
- 11b Alesi S, Emer E, Capdevila MG, Petruzziello D, Gualandi A, Cozzi PG. Molecules 2011; 16: 5298
- 11c Cozzi PG. Angew. Chem. Int. Ed. 2003; 42: 2895
- 11d Pathak K, Bhatt AP, Abdi SH. R, Kureshy RI, Khan N.-UH, Ahmad I, Jasra RV. Chirality 2007; 19: 82
- 12a DiMauro EF, Kozlowski MC. J. Am. Chem. Soc. 2002; 124: 12668
- 12b DiMauro EF, Kozlowski MC. Org. Lett. 2001; 3: 3053
- 13 Saito B, Katsuki T. Synlett 2004; 1557
- 14 Although the structure of the actual zinc species is still unclear, it is believed that the formation of PhZnEt is occurred, based on the theoretical studies. For recent study, see: Rudolph J, Bolm C, Norrby P.-O. J. Am. Chem. Soc. 2005; 127: 1548 ; and references cited therein
- 15a Bagutski V, French RM, Aggarwal VK. Angew. Chem. Int. Ed. 2010; 49: 5142
- 15b Stymiest JL, Bagutski V, French RM, Aggarwal VK. Nature (London, U.K.) 2008; 456: 778
- 16 Cozzi presumed that the absolute configurations of the tertiary propargylic alcohols from the alkynyl transfer to ketones in the presence of (R, R)-Zn(salen) are S.11c However, some of these alcohols seems to be R according to the recent study on the determination of the absolute configurations of the tertiary propargylic alcohols.17 Abdi et al. reported that the addition of phenylacetylene to arylmethylketones in the presence of (R,R)-Zn(salen) gave R alcohols through the si-face attack of ketones.11d
- 17 Kotani S, Kukita K, Tanaka K, Ichibakase T, Nakajima M. J. Org. Chem. 2014; 79: 4817
- 18 At present, we do not have any evidence to explain the changeover of the stereoselectivity in the reactions of aliphatic ketones.
- 19 Typical Experimental Procedure is Exemplified by Enantioselective Phenyl Transfer to p-Chlorobenzaldehyde Diphenylzinc (43.9 mg, 0.2 mmol) was placed in a flask under nitrogen, and diethylzinc (0.38 mL, 1.06 mol·dm–3 in hexane) was added at r.t. and stirred for 30 min at the temperature. This suspension was added to a solution of salen 1 (10.9 mg, 0.02 mmol) in toluene (0.25 mL) and further stirred at the temperature for 30 min. After the mixture was cooled to –40 °C, p-chlorobenzaldehyde (28.1 mg, 0.2 mmol) was added. After being stirred for 1 h at the same temperature, the mixture was quenched with sat. aq NH4Cl, allowed to warm to r.t., and extracted with Et2O and then washed with sat. aq NaCl. The organic extract was dried over anhydrous Na2SO4 and concentrated. Silica gel chromatography of the residue (hexane–EtOAc, 19:1 to 9:1) gave the desired product (41.4 mg, 95%) as an oil. The ee of the product was determined to be 94% by HPLC using chiral stationary-phase column as described in the footnote b of Table 1. [α]D 13 +20.2 (c 0.45, CHCl3) [lit.10d [α]D 23 +19.1 (c 0.83, CHCl3) for 83% ee, (S)]. All spectral data of products in Tables 1–3 were in accordance with those reported in the literature. Specific Rotation of some Compounds (R)-Cyclohexylphenylmethanol [α]D 26 +33.9 (c 0.2, CHCl3) for 76% ee [lit.10d [α]D 23 +38.0 (c 0.4, CHCl3) for 96% ee, (R)]. (S)-1-(4-Chlorophenyl)-1-phenylethanol [α]D 13 +13.2 (c 0.2, CHCl3) for 92% ee [lit.15b [α]D 22 +14.8 (c 6.5, CHCl3) for 98% ee, (S)]. (S)-Phenylindan-1-ol [α]D 17 +36.9 (c 1.6, CHCl3) for 88% ee [lit.15b [α]D 24 –33.3 (c 1.05, CHCl3) for 88% ee, (R)]. (S)-1-Cyclohexyl-1-phenylethanol [α]D 13 –7.1 (c 0.75, CH2Cl2) for 44% ee [lit.15a [α]D 24 +17.9 (c 3.4, CH2Cl2) for 99% ee, (R)].
For selected reviews, see:
For recent selected examples of aryl transfer to aldehydes using arylzinc reagent, see:
For reviews on selective addition of organometal reagent to carbonyl compounds, see:
For selected examples of other methods of synthesis of chiral diarylmethanols from aldehydes or ketones, see:
For enantioselective conversion of secondary alcohols into tertiary alcohols, see: