Synlett 2015; 26(11): 1615-1619
DOI: 10.1055/s-0034-1380714
letter
© Georg Thieme Verlag Stuttgart · New York

Selective and Gram-Scale Synthesis of [6]Cycloparaphenylene

Eiichi Kayahara
a   Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
b   CREST, Japan Science and Technology Agency (JST), Tokyo 102-3531, Japan
,
Vijay Kumar Patel
a   Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
b   CREST, Japan Science and Technology Agency (JST), Tokyo 102-3531, Japan
,
Jianlong Xia
c   School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. of China
,
Ramesh Jasti
d   Department of Chemistry and Biochemistry and Materials Science Institute 1253, University of Oregon, Eugene, OR 97403, USA   Email: yamago@scl.kyoto-u.ac.jp
,
Shigeru Yamago*
a   Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
b   CREST, Japan Science and Technology Agency (JST), Tokyo 102-3531, Japan
› Author Affiliations
Further Information

Publication History

Received: 12 March 2015

Accepted after revision: 14 April 2015

Publication Date:
20 May 2015 (online)


Dedicated to Professor Peter Vollhardt on the occasion of his 69th birthday

Abstract

A selective, practical, and large-scale synthesis of [6]cycloparaphenylene, the second smallest cycloparaphenylene to be synthesized, was achieved in nine steps starting from commercially available 1,4-dibromobenzene and 4′-bromobiphenyl-4-ol. The key intermediate, cis-1,4-(4-bromophenyl)-1,4-bis(triethylsiloxy)cyclohexa-2,5-diene, was prepared on a large scale (>20 g) and was selectively dimerized to form a cyclic precursor of [6]cycloparaphenylene by platinum-mediated assembly and subsequent reductive elimination. Deprotection of the triethylsilyl group and subsequent tetrachlorostannic acid (H2SnCl4)-mediated reductive aromatization gave [6]cycloparaphenylene in 23% overall yield from the commercially available substrates on gram scale.

Supporting Information

 
  • References

  • 1 Schröder A, Mekelburger H.-B, Vögtle F. Top. Curr. Chem. 1994; 172: 179
  • 2 Scott LT. Angew. Chem. Int. Ed. 2003; 42: 4133
  • 3 Kawase T, Kurata H. Chem. Rev. 2006; 106: 5250
  • 4 Tahara K, Tobe Y. Chem. Rev. 2006; 106: 5274
  • 5 Steinberg BD, Scott LT. Angew. Chem. Int. Ed. 2009; 48: 5400
  • 6 Eisenberg D, Shenhar R, Rabinovitz M. Chem. Soc. Rev. 2010; 39: 2879
  • 7 Iyoda M, Yamakawa J, Rahman MJ. Angew. Chem. Int. Ed. 2011; 50: 10522
  • 8 Evans PJ, Jasti R. Top. Curr. Chem. 2014; 349: 249
  • 9 Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. J. Am. Chem. Soc. 2008; 130: 17646
  • 10 Sisto TJ, Golder MR, Hirst ES, Jasti R. J. Am. Chem. Soc. 2011; 133: 15800
  • 11 Darzi ER, Sisto TJ, Jasti R. J. Org. Chem. 2012; 77: 6624
  • 12 Xia J, Bacon JW, Jasti R. Chem. Sci. 2012; 3: 3018
  • 13 Xia J, Jasti R. Angew. Chem. Int. Ed. 2012; 51: 2474
  • 14 Evans PJ, Darzi ER, Jasti R. Nat. Chem. 2014; 6: 404
  • 15 Xia J, Golder MR, Foster ME, Wong BM, Jasti R. J. Am. Chem. Soc. 2012; 134: 19709
  • 16 Sisto TJ, Tian X, Jasti R. J. Org. Chem. 2012; 77: 5857
  • 17 Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K. Angew. Chem. Int. Ed. 2009; 48: 6112
  • 18 Omachi H, Matsuura S, Segawa Y, Itami K. Angew. Chem. Int. Ed. 2010; 49: 10202
  • 19 Segawa Y, Miyamoto S, Omachi H, Matsuura S, Šenel P, Sasamori T, Tokitoh N, Itami K. Angew. Chem. Int. Ed. 2011; 50: 3244
  • 20 Segawa Y, Šenel P, Matsuura S, Omachi H, Itami K. Chem. Lett. 2011; 40: 423
  • 21 Ishii Y, Nakanishi Y, Omachi H, Matsuura S, Matsui K, Shinohara H, Segawa Y, Itami K. Chem. Sci. 2012; 3: 2340
  • 22 Sibbel F, Matsui K, Segawa Y, Studer A, Itami K. Chem. Commun. 2014; 50: 954
  • 23 Omachi H, Segawa Y, Itami K. Org. Lett. 2011; 13: 2480
  • 24 Yagi A, Segawa Y, Itami K. J. Am. Chem. Soc. 2012; 134: 2962
  • 25 Matsui K, Segawa Y, Itami K. Org. Lett. 2012; 14: 1888
  • 26 Matsui K, Segawa Y, Itami K. J. Am. Chem. Soc. 2014; 136: 16452
  • 27 Yagi A, Venkataramana G, Segawa Y, Itami K. Chem. Commun. 2014; 50: 957
  • 28 Ishii Y, Matsuura S, Segawa Y, Itami K. Org. Lett. 2014; 16: 2174
  • 29 Iwamoto T, Kayahara E, Yasuda N, Suzuki T, Yamago S. Angew. Chem. Int. Ed. 2014; 53: 6430
  • 30 Yamago S, Watanabe Y, Iwamoto T. Angew. Chem. Int. Ed. 2010; 49: 757
  • 31 Iwamoto T, Watanabe Y, Sakamoto Y, Suzuki T, Yamago S. J. Am. Chem. Soc. 2011; 133: 8354
  • 32 Kayahara E, Sakamoto Y, Suzuki T, Yamago S. Org. Lett. 2012; 14: 3284
  • 33 Kayahara E, Iwamoto T, Suzuki T, Yamago S. Chem. Lett. 2013; 42: 621
  • 34 Kayahara E, Patel VK, Yamago S. J. Am. Chem. Soc. 2014; 136: 2284
  • 35 Kayahara E, Iwamoto T, Takaya H, Suzuki T, Fujitsuka M, Majima T, Yasuda N, Matsuyama N, Seki S, Yamago S. Nat. Commun. 2013; 4: 2694
  • 36 Hitosugi S, Nakanishi W, Yamasaki T, Isobe H. Nat. Commun. 2011; 2: 492
  • 37 Hitosugi S, Yamasaki T, Isobe H. J. Am. Chem. Soc. 2012; 134: 12442
  • 38 Nishiuchi T, Feng X, Enkelmann V, Wagner M, Müllen K. Chem. Eur. J. 2012; 18: 16621
  • 39 Golling FE, Quernheim M, Wagner M, Nishiuchi T, Müllen K. Angew. Chem. Int. Ed. 2014; 53: 1525
  • 40 Batson JM, Swager TM. Synlett 2013; 24: 2545
  • 41 Tran-Van A.-F, Huxol E, Basler JM, Neuburger M, Adjizian J.-J, Ewels CP, Wegner HA. Org. Lett. 2014; 16: 1594
  • 42 Huang C, Huang Y, Akhmedov NG, Popp BV, Petersen JL, Wang KK. Org. Lett. 2014; 16: 2672
  • 43 Jiang H.-W, Tanaka T, Mori H, Park KH, Kim D, Osuka A. J. Am. Chem. Soc. 2015; 137: 2219
  • 44 Segawa Y, Fukazawa A, Matsuura S, Omachi H, Yamaguchi S, Irle S, Itami K. Org. Biomol. Chem. 2012; 10: 5979
  • 45 Fujitsuka M, Cho DW, Iwamoto T, Yamago S, Majima T. Phys. Chem. Chem. Phys. 2012; 14: 14585
  • 46 Nishihara T, Segawa Y, Itami K, Kanemitsu Y. J. Phys. Chem. Lett. 2012; 3: 3125
  • 47 Fujitsuka M, Iwamoto T, Kayahara E, Yamago S, Majima T. ChemPhysChem 2013; 14: 1570
  • 48 Chen H, Golder MR, Wang F, Jasti R, Swan AK. Carbon 2014; 67: 203
  • 49 Fujitsuka M, Lu C, Iwamoto T, Kayahara E, Yamago S, Majima T. J. Phys. Chem. A 2014; 118: 4527
  • 50 Alvarez MP, Burrezo PM, Kertesz M, Iwamoto T, Yamago S, Xia J, Jasti R, López Navarrete JT, Taravillo M, Baonza VG, Casado J. Angew. Chem. Int. Ed. 2014; 53: 7033
  • 51 Kayahara E, Kouyama T, Kato T, Takaya H, Yasuda N, Yamago S. Angew. Chem. Int. Ed. 2013; 52: 13722
  • 52 Golder MR, Wong BM, Jasti R. Chem. Sci. 2013; 4: 4285
  • 53 Zabula AV, Filatov AS, Xia J, Jasti R, Petrukhina MA. Angew. Chem. Int. Ed. 2013; 52: 5033
  • 54 Fujitsuka M, Tojo S, Iwamoto T, Kayahara E, Yamago S, Majima T. J. Phys. Chem. Lett. 2014; 5: 2302
  • 55 Toriumi N, Muranaka A, Kayahara E, Yamago S, Uchiyama M. J. Am. Chem. Soc. 2015; 137: 82
  • 56 Iwamoto T, Watanabe Y, Sadahiro T, Haino T, Yamago S. Angew. Chem. Int. Ed. 2011; 50: 8342
  • 57 Iwamoto T, Watanabe Y, Takaya H, Haino T, Yasuda N, Yamago S. Chem. Eur. J. 2013; 19: 14061
  • 58 Nakanishi Y, Omachi H, Matsuura S, Miyata Y, Kitaura R, Segawa Y, Itami K, Shinohara H. Angew. Chem. Int. Ed. 2014; 53: 3102
  • 59 Iwamoto T, Slanina Z, Mizorogi N, Guo J, Akasaka T, Nagase S, Takaya H, Yasuda N, Kato T, Yamago S. Chem. Eur. J. 2014; 20: 14403
  • 60 Patel VK, Kayahara E, Yamago S. Chem. Eur. J. 2015; 21: 5742
  • 61 Yamamoto T, Wakabayashi S, Osakada K. J. Organomet. Chem. 1992; 428: 223
  • 62 Osakada K, Sato R, Yamamoto T. Organometallics 1994; 13: 4645
  • 63 Abla M, Yamamoto T. Bull. Chem. Soc. Jpn. 1999; 72: 1255
  • 64 Matsumoto H, Inaba S, Rieke RD. J. Org. Chem. 1983; 48: 840
  • 65 Osakada K, Yamamoto T. Coord. Chem. Rev. 2000; 198: 379
  • 66 Nakao Y, Imanaka H, Sahoo AK, Yada A, Hiyama T. J. Am. Chem. Soc. 2005; 127: 6952
  • 67 Crystallographic data for compound 6a have been deposited with the accession number CCDC 1062546, and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK, Fax: +44(1223)336033, E-mail: deposit@ccdc.cam.ac.uk, Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.