Synlett 2015; 26(13): 1823-1826
DOI: 10.1055/s-0034-1381007
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of N-Monosubstituted Ureas from Nitriles via Tiemann Rearrangement

Chien-Hong Wang
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
,
Tsung-Han Hsieh
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
,
Chia-Chi Lin
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
,
Wen-Hsiung Yeh
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
,
Chih-An Lin
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
,
Tun-Cheng Chien*
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 19 April 2015

Accepted after revision: 26 May 2015

Publication Date:
20 July 2015 (online)


Abstract

Amidoximes, obtained from the reaction of nitriles with hydroxylamine, underwent Tiemann rearrangement in the presence of benzenesulfonyl chlorides (TsCl or o-NsCl) to form the N-substituted cyanamides. Subsequently, acidic hydrolysis of the cyanamides afforded the corresponding N-monosubstituted ureas. The synthesis of N-monosubstituted ureas from nitriles was accomplished by three steps in one pot, which provides a direct access to versatile N-monosubstituted urea derivatives from a wide variety of nitriles.

Supporting Information

 
  • References and Notes

    • 1a Han S, Siegel DS, Morrison KC, Hergenrother PJ, Movassaghi M. J. Org. Chem. 2013; 78: 11970
    • 1b Reyes JC. P, Romo D. Angew. Chem. Int. Ed. 2012; 51: 6870
    • 1c Rogers EW, Molinski TF. J. Org. Chem. 2009; 74: 7660
    • 1d Knott KE, Auschill S, Jaeger A, Knoelker H.-J. Chem. Commun. 2009; 1467
    • 1e Rogers EW, Dalisay DS, Molinski TF. Angew. Chem. Int. Ed. 2008; 47: 8086
    • 1f Jacquot DE. N, Zoellinger M, Lindel T. Angew. Chem. Int. Ed. 2005; 44: 2295
    • 1g Hanessian S, Huang G, Chenel C, Machaalani R, Loiseleur O. J. Org. Chem. 2005; 70: 6721
  • 2 McKay MJ, Nguyen HM. Carbohydr. Res. 2014; 385: 18
    • 4a Hernández-Rodríguez M, Avila-Ortiz CG, del Campo JM, Hernández-Romero D, Rosales-Hoz MJ, Juaristi E. Aust. J. Chem. 2008; 61: 364
    • 4b Connon SJ. Chem. Commun. 2008; 2499
    • 4c Connon SJ. Chem. Eur. J. 2006; 12: 5418
  • 5 Belfrage AK, Gising J, Svensson F, Åkerblom E, Sköld C, Sandström A. Eur. J. Org. Chem. 2015; 978
  • 6 Gong H, Yang M, Xiao Z, Doweyko AM, Cunningham M, Wang J, Habte S, Holloway D, Burke C, Shuster D, Gao L, Carman J, Somerville JE, Nadler SG, Salter-Cid L, Barrish JC, Weinstein DS. Bioorg. Med. Chem. Lett. 2014; 24: 3268
    • 7a Lin W.-H, Hsu JT. A, Hsieh S.-Y, Chen C.-T, Song J.-S, Yen S.-C, Hsu T, Lu C.-T, Chen C.-H, Chou L.-H, Yang Y.-N, Chiu C.-H, Chen C.-P, Tseng Y.-J, Yen K.-J, Yeh C.-F, Chao Y.-S, Yeh T.-K, Jiaang W.-T. Bioorg. Med. Chem. 2013; 21: 2856
    • 7b Li H.-F, Lu T, Zhu T, Jiang Y.-J, Rao S.-S, Hu L.-Y, Xin B.-T, Chen Y.-D. Eur. J. Med. Chem. 2009; 44: 1240
    • 7c Michaux C, Dogné J.-M, Rolin S, Masereel B, Wouters J, Durant F. Eur. J. Med. Chem. 2003; 38: 703
  • 8 Tuerp D, Bruchmann B. Macromol. Rapid Commun. 2015; 36: 138
    • 9a Wang L, Liu S, Li Z, Yu Y. Org. Lett. 2011; 13: 6137
    • 9b Houlden CE, Hutchby M, Bailey CD, Ford JG, Tyler SN. G, Gagné MR, Lloyd-Jones GC, Booker-Milburn KI. Angew. Chem. Int. Ed. 2009; 48: 1830
    • 10a Abdigali AB, Aleksandr YY, Sergei NV. Russ. Chem. Rev. 1998; 67: 295
    • 10b Vishnyakova TP, Golubeva IA, Glebova EV. Russ. Chem. Rev. 1985; 54: 249
    • 10c Kutepov DF. Russ. Chem. Rev. 1962; 31: 633
    • 11a Sharma R, Samadhiya P, Srivastava SD, Srivastava SK. Helv. Chim. Acta 2012; 95: 514
    • 11b Samadhiya P, Sharma R, Srivastava SK, Srivastava SD. Chin. J. Chem. 2011; 29: 1745
    • 11c Hackl KA, Falk H. Monatsh. Chem. 1992; 123: 599
  • 12 Curtis N. Aust. J. Chem. 1988; 41: 585
  • 13 Breitler S, Oldenhuis NJ, Fors BP, Buchwald SL. Org. Lett. 2011; 13: 3262
    • 14a Nandakumar MV. Tetrahedron Lett. 2004; 45: 1989
    • 14b Sergeev AG, Artamkina GA, Beletskaya IP. Tetrahedron Lett. 2003; 44: 4719
    • 14c Artamkina GA, Sergeev AG, Beletskaya IP. Russ. J. Org. Chem. 2002; 38: 538
    • 14d Artamkina GA, Sergeev AG, Beletskaya IP. Tetrahedron Lett. 2001; 42: 4381
    • 15a Dalby A, Mo X, Stoa R, Wroblewski N, Zhang Z, Hagen TJ. Tetrahedron Lett. 2013; 54: 2737
    • 15b De Luca L, Porcheddu A, Giacomelli G, Murgia I. Synlett 2010; 2439
    • 15c El-Deeb IM, Bayoumi SM, El-Sherbeny MA, Abdel-Aziz AA. M. Eur. J. Med. Chem. 2010; 45: 2516
    • 15d Harriman GC, Brewer M, Bennett R, Kuhn C, Bazin M, Larosa G, Skerker P, Cochran N, Gallant D, Baxter D, Picarella D, Jaffee B, Luly JR, Briskin MJ. Bioorg. Med. Chem. Lett. 2008; 18: 2509
    • 16a Nasrollahzadeh M, Azarian A, Ehsani A, Sajadi SM, Babaei F. Mater. Res. Bull. 2014; 55: 168
    • 16b Mohy El Dine T, Chapron S, Duclos M.-C, Duguet N, Popowycz F, Lemaire M. Eur. J. Org. Chem. 2013; 5445
    • 16c Manidhar DM, Uma Maheswara Rao K, Sures Reddy C, Syamasunder C, Adeppa K, Misra K. Res. Chem. Intermed. 2012; 38: 2479
    • 16d Atkinson BN, Chhatwal AR, Lomax HV, Walton JW, Williams JM. J. Chem. Commun. 2012; 48: 11626
    • 16e Verardo G, Bombardella E, Venneri CD, Strazzolini P. Eur. J. Org. Chem. 2009; 6239
    • 16f Diss ML, Kennan AJ. Biopolymers 2007; 86: 276
    • 16g Liu Q, Luedtke NW, Tor Y. Tetrahedron Lett. 2001; 42: 1445
    • 16h Seyferth D, Dow AW, Menzel H, Flood TC. J. Am. Chem. Soc. 1968; 90: 1080
    • 17a Ludek OR, Marquez VE. J. Org. Chem. 2012; 77: 815
    • 17b Browne D, O’Brien M, Koos P, Cranwell PB, Polyzos A, Ley SV. Synlett 2012; 23: 1402
    • 17c Boiocchi M, Fabbrizzi L, Garolfi M, Licchelli M, Mosca L, Zanini C. Chem. Eur. J. 2009; 15: 11288
    • 17d Reisman SE, Ready JM, Weiss MM, Hasuoka A, Hirata M, Tamaki K, Ovaska TV, Smith CJ, Wood JL. J. Am. Chem. Soc. 2008; 130: 2087
    • 17e Tao B, Timberlake JW. Synthesis 2000; 1449
    • 17f Kobayashi T, Seki T, Ichimura K. Chem. Commun. 2000; 1193
    • 18a Nasrollahzadeh M, Enayati M, Khalaj M. RSC Adv. 2014; 4: 26264
    • 18b Nasrollahzadeh M. RSC Adv. 2014; 4: 29089
    • 18c Sajadi SM, Maham M. J. Chem. Res. 2013; 623
    • 18d Kim SH, Park BR, Kim JN. Bull. Korean Chem. Soc. 2011; 32: 716
    • 18e Xiao ZL, Yang MG, Tebben AJ, Galella MA, Weinstein DS. Tetrahedron Lett. 2010; 51: 5843
    • 18f Iio K, Ichikawa E. Bull. Chem. Soc. Jpn. 1984; 57: 2009
    • 19a Tiemann F. Ber. Dtsch. Chem. Ges. 1891; 24: 4162
    • 19b Pinnow J. Ber. Dtsch. Chem. Ges. 1891; 24: 4167
  • 20 Partridge MW, Turner HA. J. Pharm. Pharmacol. 1953; 5: 103
  • 22 Ulrich H, Tucker B, Richter R. J. Org. Chem. 1978; 43: 1544
    • 23a Richter R, Tucker B, Ulrich H. J. Org. Chem. 1983; 48: 1694
    • 23b Damrauer R, Soucy D, Winkler P, Eby S. J. Org. Chem. 1980; 45: 1315
    • 23c Dondoni A, Barbaro G, Battaglia A. J. Org. Chem. 1977; 42: 3372
    • 23d Garapon J, Sillion B, Bonnier JM. Tetrahedron Lett. 1970; 11: 4905
    • 23e Boyer JH, Frints PJ. A. J. Org. Chem. 1970; 35: 2449
  • 24 Lin C.-C, Hsieh T.-H, Liao P.-Y, Liao Z.-Y, Chang C.-W, Shih Y.-C, Yeh W.-H, Chien T.-C. Org. Lett. 2014; 16: 892
  • 25 General Procedure for the One-Pot Synthesis of N-Monosubstituted Urea 4 from Nitrile 1 (Scheme 3) To the solution of nitrile 1 in EtOH (0.1 M) was added 50 wt% aq hydroxylamine solution (1.2 equiv). The mixture was stirred at reflux temperature for 1.5 h. After cooling to r.t., the reaction mixture was concentrated under reduced pressure. The crude amidoxime product 2 was dissolved in CH2Cl2 (0.1 M), and ArSO2Cl (TsCl or o-NsCl, 1.05 equiv) and DIPEA (1.05 equiv) were added at 0 °C. The mixture was stirred under nitrogen atmosphere at r.t. for 3 h or at reflux temperature for 1 h.24 The mixture was concentrated under reduced pressure. The crude cyanamide product 3 was dissolved in the mixture of 1 N aq HCl solution and EtOH (0.1 M, 1 N HCl–EtOH = 1:4, v/v). The mixture was stirred at reflux temperature for 3 h under nitrogen. After cooling to r.t. the reaction mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography.
  • 26 Analytical Data of Compounds 4e–k
    N-(4-Nitrophenyl)urea (4e)
    Mp 213–215 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 9.29 (s, 1 H, NH), 8.11 (d, 2 H, J = 9.2 Hz), 7.62 (d, 2 H, J = 9.2 Hz), 6.20 (s, 2 H, NH2). 13C NMR (100 MHz, DMSO-d 6): δ = 155.4, 147.3, 140.5, 125.1 (CH), 117.0 (CH). MS (EI, 20 eV): m/z = 108 (56), 138 (100), 181 (40) [M+]. ESI-MS: m/z = 167 (100), 182 (73) [M + 1]. HRMS (EI): m/z calcd for C7H7N3O3: 181.0487; found: 181.0486. N-(4-Trifluoromethylphenyl)urea (4f) Mp 144–145 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.95 (s, 1 H, NH), 7.60 (d, 2 H, J = 8.7 Hz), 7.54 (d, 2 H, J = 8.7 Hz), 6.04 (s, 2 H, NH2). 13C NMR (100 MHz, DMSO-d 6): δ = 155.7, 144.3, 125.9 (q, J = 3.0 Hz, CH), 124.6 (q, J = 270.0 Hz, CF3), 121.1 (q, J = 32.0 Hz), 117.4 (CH). MS (EI, 20 eV): m/z = 161 (100), 204 (41) [M+]. ESI-MS: m/z = 205 (100) [M + 1]. HRMS (EI): m/z calcd for C8H7F3N2O: 204.0510; found: 204.0508. N-(3-Methoxyphenyl)urea (4g) Mp 128–130 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.51 (s, 1 H, NH), 7.08–7.12 (m, 2 H), 6.87 (d, 1 H, J = 7.9 Hz), 6.47 (d, 1 H, J = 8.0 Hz), 5.81 (s, 2 H, NH2), 3.69 (s, 3 H, CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 159.7, 156.0, 141.8, 129.4 (CH), 110.2 (CH), 106.5 (CH), 103.6 (CH), 54.9 (CH). ESI-MS: m/z = 167 [M + 1]. HRMS (EI): m/z calcd for C8H10N2O2: 166.0742; found: 166.0741. N-(2-Methylphenyl)urea (4h) Mp 194–196 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 7.77 (d, 1 H, J = 8.0 Hz), 7.66 (s, 1 H, NH), 7.12–7.06 (m, 2 H), 6.87 (t, 1 H, J = 7.3), 6.00 (s, 2 H, NH2), 2.18 (s, 3 H, CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 156.1, 138.2, 130.0 (CH), 127.0 (CH), 126.0, 123.0 (CH), 120.9 (CH), 17.9 (CH3). MS (EI, 20 eV): m/z = 107 (100), 150 (62) [M+]. HRMS (EI): m/z calcd for C8H10N2O: 150.0793; found: 150.0792. N-(2-Chlorophenyl)urea (4i) Mp 190–192 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.12 (dd, 1 H, J = 8.4, 1.3 Hz), 8.03 (s, 1 H, NH), 7.38 (dd, 1 H, J = 8.3, 0.9 Hz), 7.24–7.20 (m, 1 H), 6.96–6.92 (m, 1 H), 6.37 (s, 2 H, NH2). 13C NMR (100 MHz, DMSO-d 6): δ = 155.6, 136.7, 129.0, 127.4, 122.5, 121.4, 121.1. MS (EI, 20 eV): m/z = 127 (100), 129 (30), 135 (40), 170 (18) [M+], 172 (8) [M + 2]. HRMS (EI): m/z calcd for C7H7ClN2O: 170.0247; found: 170.0246. 1,3-Dimethyl-5-ureidouracil (4j) Mp 254–258 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.09 (s, 1 H, NH), 7.84 (s, 1 H), 6.26 (s, 2 H, NH2), 3.29 (s, 3 H, CH3), 3.20 (s, 3 H, CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 160.2, 156.5, 149.8, 128.5, 115.0, 70.2, 37.1, 28.4. MS (EI, 20 eV): m/z = 70 (42), 155 (100), 198 (10) [M+]. HRMS (EI): m/z calcd for C7H10N4O3: 198.0753; found: 198.0760. 2-Chloro-3-ureidopyridine (4k) Mp 210–212 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.50 (dd, 1 H, J = 8.2, 1.5 Hz), 8.19 (s, 1 H, NH), 7.96 (dd, 1 H, J = 4.5, 1.5 Hz), 7.32 (dd, 1 H, J = 8.2, 4.6 Hz), 6.52 (s, 2 H, NH2). 13C NMR (100 MHz, DMSO-d 6): δ = 155.4, 141.5 (CH), 138.5, 133.9, 128.3 (CH), 123.3 (CH). ESI-MS: m/z = 155 (28), 172 (100) [M + 1]. HRMS (EI): m/z calcd for C6H6ClN3O: 171.0199; found: 171.0201.