Subscribe to RSS
DOI: 10.1055/s-0034-1381117
Ultrasound-Assisted Methyl Esterification of Carboxylic Acids Catalyzed by Polymer-Supported Triphenylphosphine
Publication History
Received: 16 April 2015
Accepted after revision: 09 June 2015
Publication Date:
09 July 2015 (online)
Abstract
A convenient and efficient sonochemical method for methyl esterification of carboxylic acids catalyzed by polymer-supported triphenylphosphine (PS-Ph3P) is reported. In the presence of 1:0.1:2 molar ratio of 2,4,6-trichloro-1,3,5-triazine/PS-Ph3P/Na2CO3, methyl esters of various carboxylic acids bearing reactive hydroxyl groups as well as acid- or base-labile functionalities could be rapidly prepared (within 10–20 min) in good to excellent yields without necessity to pre-activate the acids. Using the polymer-bound phosphine also allows easy isolation of the products which, in most of the cases, were obtained in high purities without column chromatography.
-
References and Notes
- 1a Leung G, Strezov V In Biomass Processing Technologies. Strezov V, Evans TJ. CRC Press; Boca Raton: 2014: 213
- 1b Salvi BL, Panwar NL. Renewable Sustainable Energy Rev. 2012; 16: 3680
- 1c McGinty D, Letizia CS, Api AM. Food Chem. Toxicol. 2012; 50: S479
- 1d Foster NC. SODEOPEC: Soaps, Detergents, Oleochemicals and Personal Care Products. Spitz L. AOCS Publishing; Urbana (IL, USA): 2004: 261
- 1e Cox MF, Weerasooriya U. Surfactant Sci. Ser. 2003; 114: 467
- 1f Nakamura M. J. Oleo Sci. 2001; 50: 445
- 1g Opdyke DL. J. Food Cosmet. Toxicol. 1974; 12: 939
- 2 Otera J. Esterification: Methods, Reactions, and Applications. Wiley-VCH; Weinheim: 2003: 1-326
- 3a Mal D, Jana A, Ray S, Bhattacharya S, Patra A, De S R. Synth. Commun. 2008; 38: 3937
- 3b Avila-Zarraga JG, Martinez R. Synth. Commun. 2001; 31: 2177
- 3c Mal D. Synth. Commun. 1986; 16: 331
- 4a Mastronardi F, Gutmann B, Kappe CO. Org. Lett. 2013; 15: 5590
- 4b Olias JM, Rios JJ, Valle M. J. Chromatogr. A 1989; 467: 279
- 4c Eisenbraun EJ, Morris RN, Adolphen G. J. Chem. Educ. 1970; 47: 710
- 5 Presser A, Huefner A. Monatsh. Chem. 2004; 135: 1015
- 6 Heravi MM, Ahari NZ, Oskooie HA, Ghassemzadeh M. Phosphorus, Sulfur Silicon Relat. Elem. 2005; 180: 1701
- 7 Yoshino T, Togo H. Synlett 2005; 517
- 8 Rajabi F, Saidi MR. Synth. Commun. 2004; 34: 4179
- 9 Fischer E, Speier A. Ber. Dtsch. Chem. Ges. 1895; 28: 3252
- 10a Venkataraman K, Wagle DR. Tetrahedron Lett. 1979; 3037
- 10b Kunishima M, Morita J, Kawachi C, Iwasaki F, Terao K, Tani S. Synlett 1999; 1255
- 10c Kunishima M, Kawachi C, Morita J, Terao K, Iwasaki F, Tani S. Tetrahedron 1999; 55: 13159
- 10d Kaminski ZJ. Biopolymers 2000; 55: 140
- 10e Wet-osot S, Duangkamol C, Pattarawarapan M, Phakhodee W. Monatsh. Chem. 2015; 146: 959
- 11 Rodrigues Rd C, Barros IM. A, Lima EL. S. Tetrahedron Lett. 2005; 46: 5945
- 12 Heller ST, Sarpong R. Org. Lett. 2010; 12: 4572
- 13 Morcillo SP, Alvarez de Cienfuegos L, Mota AJ, Justicia J, Robles R. J. Org. Chem. 2011; 76: 2277
- 14 Chen H, Xu X, Liu L, Tang G, Zhao Y. RSC Adv. 2013; 3: 16247
- 15 Mamidi N, Manna D. J. Org. Chem. 2013; 78: 2386
- 16a Lanning ME, Fletcher S. Tetrahedron Lett. 2013; 54: 4624
- 16b Iranpoor N, Firouzabadi H, Khalili D, Motevalli S. J. Org. Chem. 2008; 73: 4882
- 16c Fitzjarrald VP, Pongdee R. Tetrahedron Lett. 2007; 48: 3553
- 16d Dandapani S, Curran DP. Tetrahedron 2002; 58: 3855
- 16e Hughes DL, Reamer RA. J. Org. Chem. 1996; 61: 2967
- 16f Camp D, Jenkins ID. J. Org. Chem. 1989; 54: 3049
- 16g Hughes DL, Reamer RA, Bergan JJ, Grabowski EJ. J. J. Am. Chem. Soc. 1988; 110: 6487
- 17a Varma RS. Green Chem. Lett. Rev. 2007; 1: 37
- 17b Serpone N, Colarusso P. Res. Chem. Intermed. 1994; 20: 635
- 17c Cintas P, Luche JL. Green Chem. 1999; 1: 115
- 17d Puri S, Kaur B, Parmar A, Kumar H. Curr. Org. Chem. 2013; 17: 1790
- 17e Suprarukmi DD, Sudrajat BA ;Widayat Procedia Environ. Sci. 2015; 23: 78
- 18 Jaita S, Kaewkum P, Duangkamol C, Phakhodee W, Pattarawarapan M. RSC Adv. 2014; 4: 46947
- 19 General Procedure The carboxylic acid (0.271 mmol), TCT (0.050 g, 0.271 mmol), PS-Ph3P (0.009 g, 0.027 mmol, loading 3.0 mmol/g), and Na2CO3 (0.057 g, 0.542 mmol) were added to MeOH (0.5 mL). Then the mixture was sonicated in an ultrasonic bath (Elmasonic S 30H) at 50 °C for the specified time. After completion, the crude mixture was filtered through a short pad of silica to obtain the product after solvent evaporation. Whenever necessary, the product was further purified by flash chromatography.
- 20 Methyl Cinnamate (Table 1 Entry 13) Colorless oil (0.036 g, 82% yield); Rf = 0.48 (5% EtOAc–hexane). 1H NMR (400 MHz, CDCl3): δ = 7.69 (d, J = 16.0 Hz, 1 H), 7.53–7.50 (m, 2 H), 7.38–7.36 (m, 3 H), 6.44 (dd, J = 16.0, 0.8 Hz, 1 H), 3.80 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.4, 144.9, 134.4, 130.3, 128.9, 128.1, 117.8, 51.7. LRMS (EI): m/z (rel. intensity) = 162 (25) [M+], 131 (100), 103 (61), 77 (33).
- 21 (9H-Fluoren-9-yl)methyl (Methoxycarbonyl)glycinate (Table 1 Entry 19) Colorless oil (0.0717 g, 85% yield); Rf = 0.46 (40% EtOAc–hexane). 1H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 7.6 Hz, 2 H), 7.60 (d, J = 7.6 Hz, 2 H), 7.39 (t, J = 7.6 Hz, 2 H), 7.31 (t, J = 7.6 Hz, 2 H), 5.43 (br s, 1 H), 4.41 (d, J = 6.8 Hz, 2 H), 4.23 (t, J = 6.8 Hz, 1 H), 3.99 (d, J = 5.2 Hz, 2 H), 3.75 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 170.5, 156.4, 143.8, 141.3, 127.7, 127.1, 125.1, 120.0, 67.2, 52.4, 47.1, 42.7. LRMS (EI): m/z (rel. intensity) = 311 (3) [M+], 178 (100), 165 (28).
- 22 McNulty J, Nair JJ, Cheekoori S, Larichev V, Capretta A, Robertson AJ. Chem. Eur. J. 2006; 12: 9314