Semin Liver Dis 2014; 34(03): 273-284
DOI: 10.1055/s-0034-1383727
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Role of Cholangiocytes in Primary Biliary Cirrhosis

Ana Lleo
1   Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
,
Luca Maroni
2   Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
,
Shannon Glaser
3   Research, Central Texas Veterans Health Care System, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
4   Scott & White Digestive Disease Research Center, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
5   Department of Medicine, Division Gastroenterology, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
,
Gianfranco Alpini
3   Research, Central Texas Veterans Health Care System, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
4   Scott & White Digestive Disease Research Center, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
5   Department of Medicine, Division Gastroenterology, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
,
Marco Marzioni
2   Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
24 July 2014 (online)

Abstract

Primary biliary cirrhosis (PBC) is an autoimmune liver disease characterized by selective destruction of intrahepatic cholangiocytes. Mechanisms underlying the development and progression of the disease are still controversial and largely undefined. Evidence suggests that PBC results from an articulated immunologic response against an immunodominant mitochondrial autoantigen, the E2 component of the pyruvate dehydrogenase complex (PDC-E2); characteristics of the disease are also the presence of disease-specific antimitochondrial autoantibodies (AMAs) and autoreactive CD4 and CD8 T cells. Recent evidence suggests that cholangiocytes show specific immunobiological features that are responsible for the selective targeting of those cells by the immune system. The immune reaction in PBC selectively targets small sized, intrahepatic bile ducts; although a specific reason for that has not been defined yet, it has been established that the biliary epithelium displays a unique heterogeneity, for which the physiological and pathophysiological features of small and large cholangiocytes significantly differ. In this review article, the authors provide a critical overview of the current evidence on the role of cholangiocytes in the immune-mediated destruction of the biliary tree that characterizes PBC.

 
  • References

  • 1 Kaplan MM, Gershwin ME. Primary biliary cirrhosis. N Engl J Med 2005; 353 (12) 1261-1273
  • 2 Gershwin ME, Mackay IR. The causes of primary biliary cirrhosis: Convenient and inconvenient truths. Hepatology 2008; 47 (2) 737-745
  • 3 Invernizzi P. Future directions in genetic for autoimmune diseases. J Autoimmun 2009; 33 (1) 1-2
  • 4 Invernizzi P, Gershwin ME. Primary biliary cirrhosis: bad genes, bad luck. Dig Dis Sci 2012; 57 (3) 599-601
  • 5 Syal G, Fausther M, Dranoff JA. Advances in cholangiocyte immunobiology. Am J Physiol Gastrointest Liver Physiol 2012; 303 (10) G1077-G1086
  • 6 Odin JA, Huebert RC, Casciola-Rosen L, LaRusso NF, Rosen A. Bcl-2-dependent oxidation of pyruvate dehydrogenase-E2, a primary biliary cirrhosis autoantigen, during apoptosis. J Clin Invest 2001; 108 (2) 223-232
  • 7 Lleo A, Selmi C, Invernizzi P , et al. Apotopes and the biliary specificity of primary biliary cirrhosis. Hepatology 2009; 49 (3) 871-879
  • 8 Lleo A, Bowlus CL, Yang GX , et al. Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 2010; 52 (3) 987-998
  • 9 Carbone M, Mells GF, Alexander GJ , et al. Calcineurin inhibitors and the IL12A locus influence risk of recurrent primary biliary cirrhosis after liver transplantation. Am J Transplant 2013; 13 (4) 1110-1111
  • 10 Ludwig J. New concepts in biliary cirrhosis. Semin Liver Dis 1987; 7 (4) 293-301
  • 11 Kanno N, LeSage G, Glaser S, Alvaro D, Alpini G. Functional heterogeneity of the intrahepatic biliary epithelium. Hepatology 2000; 31 (3) 555-561
  • 12 Alpini G, Glaser S, Robertson W , et al. Large but not small intrahepatic bile ducts are involved in secretin-regulated ductal bile secretion. Am J Physiol 1997; 272 (5 Pt 1) G1064-G1074
  • 13 Alpini G, Roberts S, Kuntz SM , et al. Morphological, molecular, and functional heterogeneity of cholangiocytes from normal rat liver. Gastroenterology 1996; 110 (5) 1636-1643
  • 14 Benedetti A, Bassotti C, Rapino K, Marucci L, Jezequel AM. A morphometric study of the epithelium lining the rat intrahepatic biliary tree. J Hepatol 1996; 24 (3) 335-342
  • 15 Marzioni M, Glaser SS, Francis H, Phinizy JL, LeSage G, Alpini G. Functional heterogeneity of cholangiocytes. Semin Liver Dis 2002; 22 (3) 227-240
  • 16 Glaser S, Francis H, Demorrow S , et al. Heterogeneity of the intrahepatic biliary epithelium. World J Gastroenterol 2006; 12 (22) 3523-3536
  • 17 Ueno Y, Alpini G, Yahagi K , et al. Evaluation of differential gene expression by microarray analysis in small and large cholangiocytes isolated from normal mice. Liver Int 2003; 23 (6) 449-459
  • 18 Beuers U, Hohenester S, de Buy Wenniger LJ, Kremer AE, Jansen PL, Elferink RP. The biliary HCO(3)(-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 2010; 52 (4) 1489-1496
  • 19 Marinelli RA, Tietz PS, Pham LD, Rueckert L, Agre P, LaRusso NF. Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes. Am J Physiol 1999; 276 (1 Pt 1) G280-G286
  • 20 Kanno N, LeSage G, Glaser S, Alpini G. Regulation of cholangiocyte bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 2001; 281 (3) G612-G625
  • 21 Martínez-Ansó E, Castillo JE, Díez J, Medina JF, Prieto J. Immunohistochemical detection of chloride/bicarbonate anion exchangers in human liver. Hepatology 1994; 19 (6) 1400-1406
  • 22 Strazzabosco M, Mennone A, Boyer JL. Intracellular pH regulation in isolated rat bile duct epithelial cells. J Clin Invest 1991; 87 (5) 1503-1512
  • 23 Banales JM, Arenas F, Rodríguez-Ortigosa CM , et al. Bicarbonate-rich choleresis induced by secretin in normal rat is taurocholate-dependent and involves AE2 anion exchanger. Hepatology 2006; 43 (2) 266-275
  • 24 Glaser SS, Gaudio E, Rao A , et al. Morphological and functional heterogeneity of the mouse intrahepatic biliary epithelium. Lab Invest 2009; 89 (4) 456-469
  • 25 Medina JF, , Martínez-Ansó, Vazquez JJ, Prieto J. Decreased anion exchanger 2 immunoreactivity in the liver of patients with primary biliary cirrhosis. Hepatology 1997; 25 (1) 12-17
  • 26 Melero S, Spirlì C, Zsembery A , et al. Defective regulation of cholangiocyte Cl-/HCO3(-) and Na+/H+ exchanger activities in primary biliary cirrhosis. Hepatology 2002; 35 (6) 1513-1521
  • 27 Beuers U, Maroni L, Elferink RO. The biliary HCO(3)(-) umbrella: experimental evidence revisited. Curr Opin Gastroenterol 2012; 28 (3) 253-257
  • 28 Hohenester S, Wenniger LM, Paulusma CC , et al. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 2012; 55 (1) 173-183
  • 29 Banales JM, Sáez E, Uriz M , et al. Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology 2012; 56 (2) 687-697
  • 30 Alpini G, Glaser SS, Ueno Y , et al. Heterogeneity of the proliferative capacity of rat cholangiocytes after bile duct ligation. Am J Physiol 1998; 274 (4 Pt 1) G767-G775
  • 31 Tietz PS, Alpini G, Pham LD, Larusso NF. Somatostatin inhibits secretin-induced ductal hypercholeresis and exocytosis by cholangiocytes. Am J Physiol 1995; 269 (1 Pt 1) G110-G118
  • 32 Caligiuri A, Glaser S, Rodgers RE , et al. Endothelin-1 inhibits secretin-stimulated ductal secretion by interacting with ETA receptors on large cholangiocytes. Am J Physiol 1998; 275 (4 Pt 1) G835-G846
  • 33 Glaser SS, Rodgers RE, Phinizy JL , et al. Gastrin inhibits secretin-induced ductal secretion by interaction with specific receptors on rat cholangiocytes. Am J Physiol 1997; 273 (5 Pt 1) G1061-G1070
  • 34 Glaser S, Benedetti A, Marucci L , et al. Gastrin inhibits cholangiocyte growth in bile duct-ligated rats by interaction with cholecystokinin-B/Gastrin receptors via D-myo-inositol 1,4,5-triphosphate-, Ca(2+)-, and protein kinase C alpha-dependent mechanisms. Hepatology 2000; 32 (1) 17-25
  • 35 Glaser S, Alvaro D, Roskams T , et al. Dopaminergic inhibition of secretin-stimulated choleresis by increased PKC-gamma expression and decrease of PKA activity. Am J Physiol Gastrointest Liver Physiol 2003; 284 (4) G683-G694
  • 36 Alvaro D, Alpini G, Jezequel AM , et al. Role and mechanisms of action of acetylcholine in the regulation of rat cholangiocyte secretory functions. J Clin Invest 1997; 100 (6) 1349-1362
  • 37 Han Y, Glaser S, Meng F , et al. Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Exp Biol Med (Maywood) 2013; 238 (5) 549-565
  • 38 Strazzabosco M, Fiorotto R, Melero S , et al. Differentially expressed adenylyl cyclase isoforms mediate secretory functions in cholangiocyte subpopulation. Hepatology 2009; 50 (1) 244-252
  • 39 Chari RS, Schutz SM, Haebig JE , et al. Adenosine nucleotides in bile. Am J Physiol 1996; 270 (2 Pt 1) G246-G252
  • 40 Woo K, Sathe M, Kresge C , et al. Adenosine triphosphate release and purinergic (P2) receptor-mediated secretion in small and large mouse cholangiocytes. Hepatology 2010; 52 (5) 1819-1828
  • 41 Dutta AK, Khimji AK, Kresge C , et al. Identification and functional characterization of TMEM16A, a Ca2+-activated Cl- channel activated by extracellular nucleotides, in biliary epithelium. J Biol Chem 2011; 286 (1) 766-776
  • 42 Dutta AK, Woo K, Khimji AK, Kresge C, Feranchak AP. Mechanosensitive Cl- secretion in biliary epithelium mediated through TMEM16A. Am J Physiol Gastrointest Liver Physiol 2013; 304 (1) G87-G98
  • 43 Cardinale V, Wang Y, Carpino G , et al. The biliary tree—a reservoir of multipotent stem cells. Nat Rev Gastroenterol Hepatol 2012; 9 (4) 231-240
  • 44 Alpini G, Ulrich C, Roberts S , et al. Molecular and functional heterogeneity of cholangiocytes from rat liver after bile duct ligation. Am J Physiol 1997; 272 (2 Pt 1) G289-G297
  • 45 Alvaro D, Alpini G, Onori P , et al. Estrogens stimulate proliferation of intrahepatic biliary epithelium in rats. Gastroenterology 2000; 119 (6) 1681-1691
  • 46 Alvaro D, Alpini G, Onori P , et al. Effect of ovariectomy on the proliferative capacity of intrahepatic rat cholangiocytes. Gastroenterology 2002; 123 (1) 336-344
  • 47 Marzioni M, Glaser S, Francis H , et al. Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin. Gastroenterology 2005; 128 (1) 121-137
  • 48 LeSagE G, Alvaro D, Benedetti A , et al. Cholinergic system modulates growth, apoptosis, and secretion of cholangiocytes from bile duct-ligated rats. Gastroenterology 1999; 117 (1) 191-199
  • 49 Gaudio E, Barbaro B, Alvaro D , et al. Vascular endothelial growth factor stimulates rat cholangiocyte proliferation via an autocrine mechanism. Gastroenterology 2006; 130 (4) 1270-1282
  • 50 Gaudio E, Onori P, Pannarale L, Alvaro D. Hepatic microcirculation and peribiliary plexus in experimental biliary cirrhosis: a morphological study. Gastroenterology 1996; 111 (4) 1118-1124
  • 51 Alvaro D, Mancino MG, Glaser S , et al. Proliferating cholangiocytes: a neuroendocrine compartment in the diseased liver. Gastroenterology 2007; 132 (1) 415-431
  • 52 LeSage GD, Glaser SS, Marucci L , et al. Acute carbon tetrachloride feeding induces damage of large but not small cholangiocytes from BDL rat liver. Am J Physiol 1999; 276 (5 Pt 1) G1289-G1301
  • 53 LeSage GD, Benedetti A, Glaser S , et al. Acute carbon tetrachloride feeding selectively damages large, but not small, cholangiocytes from normal rat liver. Hepatology 1999; 29 (2) 307-319
  • 54 Alpini G, Glaser SS, Ueno Y , et al. Bile acid feeding induces cholangiocyte proliferation and secretion: evidence for bile acid-regulated ductal secretion. Gastroenterology 1999; 116 (1) 179-186
  • 55 Alpini G, Ueno Y, Glaser SS , et al. Bile acid feeding increased proliferative activity and apical bile acid transporter expression in both small and large rat cholangiocytes. Hepatology 2001; 34 (5) 868-876
  • 56 Lesage G, Glaser S, Ueno Y , et al. Regression of cholangiocyte proliferation after cessation of ANIT feeding is coupled with increased apoptosis. Am J Physiol Gastrointest Liver Physiol 2001; 281 (1) G182-G190
  • 57 Francis H, Glaser S, Ueno Y , et al. cAMP stimulates the secretory and proliferative capacity of the rat intrahepatic biliary epithelium through changes in the PKA/Src/MEK/ERK1/2 pathway. J Hepatol 2004; 41 (4) 528-537
  • 58 Alpini G, Franchitto A, Demorrow S , et al. Activation of alpha(1) -adrenergic receptors stimulate the growth of small mouse cholangiocytes via calcium-dependent activation of nuclear factor of activated T cells 2 and specificity protein 1. Hepatology 2011; 53 (2) 628-639
  • 59 Francis HL, Demorrow S, Franchitto A , et al. Histamine stimulates the proliferation of small and large cholangiocytes by activation of both IP3/Ca2+ and cAMP-dependent signaling mechanisms. Lab Invest 2012; 92 (2) 282-294
  • 60 Mancinelli R, Franchitto A, Glaser S , et al. GABA induces the differentiation of small into large cholangiocytes by activation of Ca(2+) /CaMK I-dependent adenylyl cyclase 8. Hepatology 2013; 58 (1) 251-263
  • 61 Liu Y, Meyer C, Xu C , et al. Animal models of chronic liver diseases. Am J Physiol Gastrointest Liver Physiol 2013; 304 (5) G449-G468
  • 62 Kountouras J, Billing BH, Scheuer PJ. Prolonged bile duct obstruction: a new experimental model for cirrhosis in the rat. Br J Exp Pathol 1984; 65 (3) 305-311
  • 63 Starkel P, Leclercq IA. Animal models for the study of hepatic fibrosis. Best Pract Res Clin Gastroenterol 2011; 25 (2) 319-333
  • 64 Goldfarb S, Singer EJ, Popper H. Experimental cholangitis due to alpha-naphthyl-isothiocyanate (ANIT). Am J Pathol 1962; 40: 685-698
  • 65 Ohta Y, Kongo M, Sasaki E, Harada N. Change in hepatic antioxidant defense system with liver injury development in rats with a single alpha-naphthylisothiocyanate intoxication. Toxicology 1999; 139 (3) 265-275
  • 66 Kodali P, Wu P, Lahiji PA, Brown EJ, Maher JJ. ANIT toxicity toward mouse hepatocytes in vivo is mediated primarily by neutrophils via CD18. Am J Physiol Gastrointest Liver Physiol 2006; 291 (2) G355-G363
  • 67 Chang ML, Yeh CT, Chang PY, Chen JC. Comparison of murine cirrhosis models induced by hepatotoxin administration and common bile duct ligation. World J Gastroenterol 2005; 11 (27) 4167-4172
  • 68 Fickert P, Stöger U, Fuchsbichler A , et al. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol 2007; 171 (2) 525-536
  • 69 Kakis G, Yousef IM. Pathogenesis of lithocholate- and taurolithocholate-induced intrahepatic cholestasis in rats. Gastroenterology 1978; 75 (4) 595-607
  • 70 Beuers U, Denk GU, Soroka CJ , et al. Taurolithocholic acid exerts cholestatic effects via phosphatidylinositol 3-kinase-dependent mechanisms in perfused rat livers and rat hepatocyte couplets. J Biol Chem 2003; 278 (20) 17810-17818
  • 71 Fickert P, Fuchsbichler A, Marschall HU , et al. Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice. Am J Pathol 2006; 168 (2) 410-422
  • 72 Trauner M, Fickert P, Halilbasic E, Moustafa T. Lessons from the toxic bile concept for the pathogenesis and treatment of cholestatic liver diseases. Wien Med Wochenschr 2008; 158 (19-20) 542-548
  • 73 Koarada S, Wu Y, Fertig N , et al. Genetic control of autoimmunity: protection from diabetes, but spontaneous autoimmune biliary disease in a nonobese diabetic congenic strain. J Immunol 2004; 173 (4) 2315-2323
  • 74 Irie J, Wu Y, Wicker LS , et al. NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med 2006; 203 (5) 1209-1219
  • 75 Moritoki Y, Tsuda M, Tsuneyama K , et al. B cells promote hepatic inflammation, biliary cyst formation, and salivary gland inflammation in the NOD.c3c4 model of autoimmune cholangitis. Cell Immunol 2011; 268 (1) 16-23
  • 76 Oertelt S, Lian ZX, Cheng CM , et al. Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. J Immunol 2006; 177 (3) 1655-1660
  • 77 Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006; 24: 99-146
  • 78 Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12 (2) 171-181
  • 79 Ueno Y, Ambrosini YM, Moritoki Y, Ridgway WM, Gershwin ME. Murine models of autoimmune cholangitis. Curr Opin Gastroenterol 2010; 26 (3) 274-279
  • 80 Yang GX, Lian ZX, Chuang YH , et al. Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice. Hepatology 2008; 47 (6) 1974-1982
  • 81 Marie JC, Letterio JJ, Gavin M, Rudensky AY. TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med 2005; 201 (7) 1061-1067
  • 82 Lan RY, Selmi C, Gershwin ME. The regulatory, inflammatory, and T cell programming roles of interleukin-2 (IL-2). J Autoimmun 2008; 31 (1) 7-12
  • 83 Lan RY, Cheng C, Lian ZX , et al. Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology 2006; 43 (4) 729-737
  • 84 Wakabayashi K, Lian ZX, Moritoki Y , et al. IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis. Hepatology 2006; 44 (5) 1240-1249
  • 85 Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 1995; 3 (4) 521-530
  • 86 Hsu W, Zhang W, Tsuneyama K , et al. Differential mechanisms in the pathogenesis of autoimmune cholangitis versus inflammatory bowel disease in interleukin-2Ralpha(-/-) mice. Hepatology 2009; 49 (1) 133-140
  • 87 Prieto J, Qian C, García N, Díez J, Medina JF. Abnormal expression of anion exchanger genes in primary biliary cirrhosis. Gastroenterology 1993; 105 (2) 572-578
  • 88 Salas JT, Banales JM, Sarvide S , et al. Ae2a,b-deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis. Gastroenterology 2008; 134 (5) 1482-1493
  • 89 Surh CD, Coppel R, Gershwin ME. Structural requirement for autoreactivity on human pyruvate dehydrogenase-E2, the major autoantigen of primary biliary cirrhosis. Implication for a conformational autoepitope. J Immunol 1990; 144 (9) 3367-3374
  • 90 Leung PS, Quan C, Park O , et al. Immunization with a xenobiotic 6-bromohexanoate bovine serum albumin conjugate induces antimitochondrial antibodies. J Immunol 2003; 170 (10) 5326-5332
  • 91 Leung PS, Park O, Tsuneyama K , et al. Induction of primary biliary cirrhosis in guinea pigs following chemical xenobiotic immunization. J Immunol 2007; 179 (4) 2651-2657
  • 92 Amano K, Leung PS, Rieger R , et al. Chemical xenobiotics and mitochondrial autoantigens in primary biliary cirrhosis: identification of antibodies against a common environmental, cosmetic, and food additive, 2-octynoic acid. J Immunol 2005; 174 (9) 5874-5883
  • 93 Wakabayashi K, Lian ZX, Leung PS , et al. Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology 2008; 48 (2) 531-540
  • 94 Brown WR, Kloppel TM. The liver and IgA: immunological, cell biological and clinical implications. Hepatology 1989; 9 (5) 763-784
  • 95 Harada K, Isse K, Nakanuma Y. Interferon gamma accelerates NF-kappaB activation of biliary epithelial cells induced by Toll-like receptor and ligand interaction. J Clin Pathol 2006; 59 (2) 184-190
  • 96 Ballardini G, Mirakian R, Bianchi FB, Pisi E, Doniach D, Bottazzo GF. Aberrant expression of HLA-DR antigens on bileduct epithelium in primary biliary cirrhosis: relevance to pathogenesis. Lancet 1984; 2 (8410) 1009-1013
  • 97 Saidman SL, Duquesnoy RJ, Zeevi A, Fung JJ, Starzl TE, Demetris AJ. Recognition of major histocompatibility complex antigens on cultured human biliary epithelial cells by alloreactive lymphocytes. Hepatology 1991; 13 (2) 239-246
  • 98 Ichiki Y, Selmi C, Shimoda S, Ishibashi H, Gordon SC, Gershwin ME. Mitochondrial antigens as targets of cellular and humoral auto-immunity in primary biliary cirrhosis. Clin Rev Allergy Immunol 2005; 28 (2) 83-91
  • 99 Yokomori H, Oda M, Ogi M , et al. Expression of adhesion molecules on mature cholangiocytes in canal of Hering and bile ductules in wedge biopsy samples of primary biliary cirrhosis. World J Gastroenterol 2005; 11 (28) 4382-4389
  • 100 Fava G, Glaser S, Francis H, Alpini G. The immunophysiology of biliary epithelium. Semin Liver Dis 2005; 25 (3) 251-264
  • 101 Ayres RC, Neuberger JM, Shaw J, Joplin R, Adams DH. Intercellular adhesion molecule-1 and MHC antigens on human intrahepatic bile duct cells: effect of pro-inflammatory cytokines. Gut 1993; 34 (9) 1245-1249
  • 102 Tsuneyama K, Harada K, Yasoshima M, Kaji K, Gershwin ME, Nakanuma Y. Expression of co-stimulatory factor B7-2 on the intrahepatic bile ducts in primary biliary cirrhosis and primary sclerosing cholangitis: an immunohistochemical study. J Pathol 1998; 186 (2) 126-130
  • 103 Takeda K, Kojima Y, Ikejima K , et al. Death receptor 5 mediated-apoptosis contributes to cholestatic liver disease. Proc Natl Acad Sci U S A 2008; 105 (31) 10895-10900
  • 104 Chen XM, O'Hara SP, Nelson JB , et al. Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappaB. J Immunol 2005; 175 (11) 7447-7456
  • 105 Nakamura M, Funami K, Komori A , et al. Increased expression of Toll-like receptor 3 in intrahepatic biliary epithelial cells at sites of ductular reaction in diseased livers. Hepatol Int 2008; 2 (2) 222-230
  • 106 Harada K, Isse K, Sato Y, Ozaki S, Nakanuma Y. Endotoxin tolerance in human intrahepatic biliary epithelial cells is induced by upregulation of IRAK-M. Liver Int 2006; 26 (8) 935-942
  • 107 Kobayashi K, Hernandez LD, Galán JE, Janeway Jr CA, Medzhitov R, Flavell RA. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 2002; 110 (2) 191-202
  • 108 Woof JM, Mestecky J. Mucosal immunoglobulins. Immunol Rev 2005; 206: 64-82
  • 109 Tomana M, Kulhavy R, Mestecky J. Receptor-mediated binding and uptake of immunoglobulin A by human liver. Gastroenterology 1988; 94 (3) 762-770
  • 110 Matsumura S, Van De Water J, Leung P , et al. Caspase induction by IgA antimitochondrial antibody: IgA-mediated biliary injury in primary biliary cirrhosis. Hepatology 2004; 39 (5) 1415-1422
  • 111 Harada K, Ohba K, Ozaki S , et al. Peptide antibiotic human beta-defensin-1 and -2 contribute to antimicrobial defense of the intrahepatic biliary tree. Hepatology 2004; 40 (4) 925-932
  • 112 Leon MP, Kirby JA, Gibbs P, Burt AD, Bassendine MF. Immunogenicity of biliary epithelial cells: study of the expression of B7 molecules. J Hepatol 1995; 22 (5) 591-595
  • 113 Morita M, Watanabe Y, Akaike T. Inflammatory cytokines up-regulate intercellular adhesion molecule-1 expression on primary cultured mouse hepatocytes and T-lymphocyte adhesion. Hepatology 1994; 19 (2) 426-431
  • 114 Leon MP, Bassendine MF, Wilson JL, Ali S, Thick M, Kirby JA. Immunogenicity of biliary epithelium: investigation of antigen presentation to CD4+ T cells. Hepatology 1996; 24 (3) 561-567
  • 115 Cruickshank SM, Southgate J, Selby PJ, Trejdosiewicz LK. Expression and cytokine regulation of immune recognition elements by normal human biliary epithelial and established liver cell lines in vitro. J Hepatol 1998; 29 (4) 550-558
  • 116 Oo YH, Adams DH. The role of chemokines in the recruitment of lymphocytes to the liver. J Autoimmun 2010; 34 (1) 45-54
  • 117 Reynoso-Paz S, Coppel RL, Mackay IR, Bass NM, Ansari AA, Gershwin ME. The immunobiology of bile and biliary epithelium. Hepatology 1999; 30 (2) 351-357
  • 118 Spirlì C, Nathanson MH, Fiorotto R , et al. Proinflammatory cytokines inhibit secretion in rat bile duct epithelium. Gastroenterology 2001; 121 (1) 156-169
  • 119 Morland CM, Fear J, McNab G, Joplin R, Adams DH. Promotion of leukocyte transendothelial cell migration by chemokines derived from human biliary epithelial cells in vitro. Proc Assoc Am Physicians 1997; 109 (4) 372-382
  • 120 Harada K, Shimoda S, Sato Y, Isse K, Ikeda H, Nakanuma Y. Periductal interleukin-17 production in association with biliary innate immunity contributes to the pathogenesis of cholangiopathy in primary biliary cirrhosis. Clin Exp Immunol 2009; 157 (2) 261-270
  • 121 Lan RY, Salunga TL, Tsuneyama K , et al. Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J Autoimmun 2009; 32 (1) 43-51
  • 122 Ramaswamy M, Deng M, Siegel RM. Harnessing programmed cell death as a therapeutic strategy in rheumatic diseases. Nat Rev Rheumatol 2011; 7 (3) 152-160
  • 123 Nagata S, Hanayama R, Kawane K. Autoimmunity and the clearance of dead cells. Cell 2010; 140 (5) 619-630
  • 124 Henson PM. Dampening inflammation. Nat Immunol 2005; 6 (12) 1179-1181
  • 125 Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 2002; 109 (1) 41-50
  • 126 Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 1994; 179 (4) 1317-1330
  • 127 Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003; 425 (6957) 516-521
  • 128 Koga H, Sakisaka S, Ohishi M, Sata M, Tanikawa K. Nuclear DNA fragmentation and expression of Bcl-2 in primary biliary cirrhosis. Hepatology 1997; 25 (5) 1077-1084
  • 129 Harada K, Ozaki S, Gershwin ME, Nakanuma Y. Enhanced apoptosis relates to bile duct loss in primary biliary cirrhosis. Hepatology 1997; 26 (6) 1399-1405
  • 130 Harada K, Kono N, Tsuneyama K, Nakanuma Y. Cell-kinetic study of proliferating bile ductules in various hepatobiliary diseases. Liver 1998; 18 (4) 277-284
  • 131 Harada K, Furubo S, Ozaki S, Hiramatsu K, Sudo Y, Nakanuma Y. Increased expression of WAF1 in intrahepatic bile ducts in primary biliary cirrhosis relates to apoptosis. J Hepatol 2001; 34 (4) 500-506
  • 132 Tinmouth J, Lee M, Wanless IR, Tsui FW, Inman R, Heathcote EJ. Apoptosis of biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis. Liver 2002; 22 (3) 228-234
  • 133 Lleo A, Gershwin ME, Mantovani A, Invernizzi P. Towards common denominators in primary biliary cirrhosis: the role of IL-12. J Hepatol 2012; 56 (3) 731-733
  • 134 Hu B, Allina J, Bai J, Kesar V, Odin JA. Catalase and estradiol inhibit mitochondrial protein S-glutathionylation. Mol Cell Biochem 2012; 367 (1-2) 51-58
  • 135 Allina J, Hu B, Sullivan DM , et al. T cell targeting and phagocytosis of apoptotic biliary epithelial cells in primary biliary cirrhosis. J Autoimmun 2006; 27 (4) 232-241
  • 136 Rong G, Zhong R, Lleo A , et al. Epithelial cell specificity and apotope recognition by serum autoantibodies in primary biliary cirrhosis. Hepatology 2011; 54 (1) 196-203