Semin Reprod Med 2014; 32(05): 358-364
DOI: 10.1055/s-0034-1383735
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

How Cells of the Immune System Prepare the Endometrium for Implantation

Ana Teles
1   Experimental Obstetrics and Gynaecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
,
Ana Claudia Zenclussen
1   Experimental Obstetrics and Gynaecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
24 June 2014 (online)

Abstract

Characterized by its cyclical regeneration and differentiation, the endometrium is one of the most dynamic tissues of the human body. As a main player during implantation and later development of the embryo it has a unique and extremely important role in the survival of species. This study is a review of the current literature focused on the cyclical restructuring of the endometrium and the morphological and cellular alterations during the different phases of the reproductive cycle. These changes confer specific receptive capabilities for implantation to take place. The mechanism of implantation is addressed as well as possible receptivity obstacles that can influence this process. More specifically, we discuss the involvement of immune cells in the establishment of implantation and its consequences for a successful pregnancy. A deep knowledge of the mechanisms involved in the regulation and transformation of the endometrium and embryo implantation is essential to understand disorders that can influence fertility and women health.

 
  • References

  • 1 Ferenczy A, Bertrand G, Gelfand MM. Proliferation kinetics of human endometrium during the normal menstrual cycle. Am J Obstet Gynecol 1979; 133 (8) 859-867
  • 2 Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol 1975; 122 (2) 262-263
  • 3 Massai MR, Bergeron C, Martel D , et al. Physiological oestradiol and progesterone replacement cycles in women with ovarian failure: a model to study endometrial maturation and sex steroid receptor regulation by exogenous hormones. Hum Reprod 1993; 8 (11) 1828-1834
  • 4 Salamonsen LA. Current concepts of the mechanisms of menstruation: a normal process of tissue destruction. Trends Endocrinol Metab 1998; 9 (8) 305-309
  • 5 Salamonsen LA. Tissue injury and repair in the female human reproductive tract. Reproduction 2003; 125 (3) 301-311
  • 6 Padykula HA. Regeneration in the primate uterus: the role of stem cells. Ann N Y Acad Sci 1991; 622: 47-56
  • 7 Uduwela AS, Perera MA, Aiqing L, Fraser IS. Endometrial-myometrial interface: relationship to adenomyosis and changes in pregnancy. Obstet Gynecol Surv 2000; 55 (6) 390-400
  • 8 Martel D, Malet C, Gautray JP, Psychoyos A. Surface Changes of the Luminal Uterine Epithelium during the Human Menstrual Cycle: A Scanning Electron Microscopic Study. In: Brux J, Mortel R, Gautray JP, , eds. The Endometrium Boston, MA: Springer US; 1981: 15-29
  • 9 Brux J, Mortel R, Gautray JP , Eds. The Endometrium. Boston, MA: Springer US; 1981
  • 10 Bentin-Ley U, Sjögren A, Nilsson L, Hamberger L, Larsen JF, Horn T. Presence of uterine pinopodes at the embryo-endometrial interface during human implantation in vitro. Hum Reprod 1999; 14 (2) 515-520
  • 11 Baggish MS, Pauerstein CJ, Woodruff JD. Role of stroma in regeneration of endometrial epithelium. Am J Obstet Gynecol 1967; 99 (4) 459-465
  • 12 Garry R, Hart R, Karthigasu KA, Burke C. A re-appraisal of the morphological changes within the endometrium during menstruation: a hysteroscopic, histological and scanning electron microscopic study. Hum Reprod 2009; 24 (6) 1393-1401
  • 13 Nogales-Ortiz F, Puerta J, Nogales Jr FF. The normal menstrual cycle. Chronology and mechanism of endometrial desquamation. Obstet Gynecol 1978; 51 (3) 259-264
  • 14 Ludwig H, Metzger H. The re-epithelization of endometrium after menstrual desquamation. Arch Gynakol 1976; 221 (1) 51-60
  • 15 Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet 2006; 7 (3) 185-199
  • 16 Caligioni CS. Assessing reproductive status/stages in mice. Curr Protoc Neurosci 2009; 4 ( Appendix ): 4I
  • 17 Croy BA, Yamada AT, DeMayo FJ, Adamson SL. The guide to investigation of mouse pregnancy. London: Academic Press; 2014
  • 18 Prianishnikov VA. On the concept of stem cell and a model of functional-morphological structure of the endometrium. Contraception 1978; 18 (3) 213-223
  • 19 Chan RWS, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 2004; 70 (6) 1738-1750
  • 20 Schwab KE, Chan RWS, Gargett CE. Putative stem cell activity of human endometrial epithelial and stromal cells during the menstrual cycle. Fertil Steril 2005; 84 (Suppl. 02) 1124-1130
  • 21 Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG. Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant 2008; 17 (3) 303-311
  • 22 Anisimov SV, Zemelko VI, Grinchuk TM, Nikolsky NN. Menstrual blood stem cells as a potential source for cell therapy. Cell Tissue Biol 2013; 7 (3) 201-206
  • 23 Nilsson O. Ultrastructure of mouse uterine surface epithelium under different estrogenic influences. 1. Spayed animals and oestrous animals. J Ultrastruct Res 1958; 1 (4) 375-396
  • 24 Singh MM, Chauhan SC, Trivedi RN, Maitra SC, Kamboj VP. Correlation of pinopod development on uterine luminal epithelial surface with hormonal events and endometrial sensitivity in rat. Eur J Endocrinol 1996; 135 (1) 107-117
  • 25 Quinn CE, Detmar J, Casper RF. Pinopodes are present in Lif null and Hoxa10 null mice. Fertil Steril 2007; 88 (4, Suppl) 1021-1028
  • 26 Nikas G, Aghajanova L. Endometrial pinopodes: some more understanding on human implantation?. Reprod Biomed Online 2002; 4 (Suppl. 03) 18-23
  • 27 Quinn C, Ryan E, Claessens EA , et al. The presence of pinopodes in the human endometrium does not delineate the implantation window. Fertil Steril 2007; 87 (5) 1015-1021
  • 28 Gipson IK, Ho SB, Spurr-Michaud SJ , et al. Mucin genes expressed by human female reproductive tract epithelia. Biol Reprod 1997; 56 (4) 999-1011
  • 29 Hey NA, Graham RA, Seif MW, Aplin JD. The polymorphic epithelial mucin MUC1 in human endometrium is regulated with maximal expression in the implantation phase. J Clin Endocrinol Metab 1994; 78 (2) 337-342
  • 30 Aplin JD, Seif MW, Graham RA, Hey NA, Behzad F, Campbell S. The endometrial cell surface and implantation. Expression of the polymorphic mucin MUC-1 and adhesion molecules during the endometrial cycle. Ann N Y Acad Sci 1994; 734: 103-121
  • 31 Aplin JD, Hey NA, Graham RA. Human endometrial MUC1 carries keratan sulfate: characteristic glycoforms in the luminal epithelium at receptivity. Glycobiology 1998; 8 (3) 269-276
  • 32 Aplin JD. MUC-1 glycosylation in endometrium: possible roles of the apical glycocalyx at implantation. Hum Reprod 1999; 14 (Suppl. 02) 17-25
  • 33 Someya M, Kojima T, Ogawa M , et al. Regulation of tight junctions by sex hormones in normal human endometrial epithelial cells and uterus cancer cell line Sawano. Cell Tissue Res 2013; 354 (2) 481-494
  • 34 Murphy CR, Rogers PA, Hosie MJ, Leeton J, Beaton L. Tight junctions of human uterine epithelial cells change during the menstrual cycle: a morphometric study. Acta Anat (Basel) 1992; 144 (1) 36-38
  • 35 Iwanaga S, Shimizu M, Matsufuji Y , et al. Alterations in gap junctions of human endometrial epithelial cells during normal menstrual cycle—freeze-fracture electron microscopic study. Kurume Med J 1990; 37 (2) 111-115
  • 36 Reardon SN, King ML, MacLean II JA , et al. CDH1 is essential for endometrial differentiation, gland development, and adult function in the mouse uterus. Biol Reprod 2012; 86 (5) ):141, 1-10
  • 37 Hopwood D, Levison DA. Atrophy and apoptosis in the cyclical human endometrium. J Pathol 1976; 119 (3) 159-166
  • 38 Tao XJ, Tilly KI, Maravei DV , et al. Differential expression of members of the bcl-2 gene family in proliferative and secretory human endometrium: glandular epithelial cell apoptosis is associated with increased expression of bax. J Clin Endocrinol Metab 1997; 82 (8) 2738-2746
  • 39 Stewart CJ, Campbell-Brown M, Critchley HO, Farquharson MA. Endometrial apoptosis in patients with dysfunctional uterine bleeding. Histopathology 1999; 34 (2) 99-105
  • 40 Galán A, O'Connor JE, Valbuena D , et al. The human blastocyst regulates endometrial epithelial apoptosis in embryonic adhesion. Biol Reprod 2000; 63 (2) 430-439
  • 41 Harada T, Kaponis A, Iwabe T , et al. Apoptosis in human endometrium and endometriosis. Hum Reprod Update 2004; 10 (1) 29-38
  • 42 von Rango U, Classen-Linke I, Krusche CA, Beier HM. The receptive endometrium is characterized by apoptosis in the glands. Hum Reprod 1998; 13 (11) 3177-3189
  • 43 Vaskivuo TE, Stenbäck F, Karhumaa P, Risteli J, Dunkel L, Tapanainen JS. Apoptosis and apoptosis-related proteins in human endometrium. Mol Cell Endocrinol 2000; 165 (1-2) 75-83
  • 44 Otsuki Y. Apoptosis in human endometrium: apoptotic detection methods and signaling. Med Electron Microsc 2001; 34 (3) 166-173
  • 45 Pampfer S, Donnay I. Apoptosis at the time of embryo implantation in mouse and rat. Cell Death Differ 1999; 6 (6) 533-545
  • 46 Dharma SJ, Kholkute SD, Nandedkar TD. Apoptosis in endometrium of mouse during estrous cycle. Indian J Exp Biol 2001; 39 (3) 218-222
  • 47 Arvola M, Mattsson R. Placental Immune Defences. In: Encyclopedia of Life Sciences. Chichester: John Wiley & Sons, Ltd; 2001
  • 48 Abrahamsohn PA, Zorn TM. Implantation and decidualization in rodents. J Exp Zool 1993; 266 (6) 603-628
  • 49 Finn CA, Martin L. Patterns of cell division in the mouse uterus during early pregnancy. J Endocrinol 1967; 39 (4) 593-597
  • 50 Tabibzadeh S, Babaknia A. The signals and molecular pathways involved in implantation, a symbiotic interaction between blastocyst and endometrium involving adhesion and tissue invasion. Hum Reprod 1995; 10 (6) 1579-1602
  • 51 Bergh PA, Navot D. The impact of embryonic development and endometrial maturity on the timing of implantation. Fertil Steril 1992; 58 (3) 537-542
  • 52 Psychoyos A. Hormonal control of uterine receptivity for nidation. J Reprod Fertil Suppl 1976; ; ( (25) 17-28
  • 53 Martel D, Monier MN, Roche D, Psychoyos A. Hormonal dependence of pinopode formation at the uterine luminal surface. Hum Reprod 1991; 6 (4) 597-603
  • 54 Nikas G, Drakakis P, Loutradis D , et al. Uterine pinopodes as markers of the 'nidation window' in cycling women receiving exogenous oestradiol and progesterone. Hum Reprod 1995; 10 (5) 1208-1213
  • 55 Bagot CN, Kliman HJ, Taylor HS. Maternal Hoxa10 is required for pinopod formation in the development of mouse uterine receptivity to embryo implantation. Dev Dyn 2001; 222 (3) 538-544
  • 56 Cross JC, Werb Z, Fisher SJ. Implantation and the placenta: key pieces of the development puzzle. Science 1994; 266 (5190) 1508-1518
  • 57 Kirby DR, Potts DM, Wilson IB. On the orientation of the implanting blastocyst. J Embryol Exp Morphol 1967; 17 (3) 527-532
  • 58 Pijnenborg R, Bland JM, Robertson WB, Brosens I. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta 1983; 4 (4) 397-413
  • 59 Wilcox AJ, Weinberg CR, O'Connor JF , et al. Incidence of early loss of pregnancy. N Engl J Med 1988; 319 (4) 189-194
  • 60 Weiss G, Goldsmith LT, Taylor RN, Bellet D, Taylor HS. Inflammation in reproductive disorders. Reprod Sci 2009; 16 (2) 216-229
  • 61 Braundmeier A, Jackson K, Hastings J, Koehler J, Nowak R, Fazleabas A. Induction of endometriosis alters the peripheral and endometrial regulatory T cell population in the non-human primate. Hum Reprod 2012; 27 (6) 1712-1722
  • 62 Wiesenfeld HC, Hillier SL, Meyn LA, Amortegui AJ, Sweet RL. Subclinical pelvic inflammatory disease and infertility. Obstet Gynecol 2012; 120 (1) 37-43
  • 63 Johnston-MacAnanny EB, Hartnett J, Engmann LL, Nulsen JC, Sanders MM, Benadiva CA. Chronic endometritis is a frequent finding in women with recurrent implantation failure after in vitro fertilization. Fertil Steril 2010; 93 (2) 437-441
  • 64 Tortorella C, Piazzolla G, Matteo M , et al. Interleukin-6, interleukin-1β, and tumor necrosis factor α in menstrual effluents as biomarkers of chronic endometritis. Fertil Steril 2014; 101 (1) 242-247
  • 65 Cakmak H, Guzeloglu-Kayisli O, Kayisli UA, Arici A. Immune-endocrine interactions in endometriosis. Front Biosci (Elite Ed) 2009; 1: 429-443
  • 66 Gebel HM, Braun DP, Tambur A, Frame D, Rana N, Dmowski WP. Spontaneous apoptosis of endometrial tissue is impaired in women with endometriosis. Fertil Steril 1998; 69 (6) 1042-1047
  • 67 Bilotas M, Meresman G, Buquet R, Sueldo C, Barañao RI. Effect of vascular endothelial growth factor and interleukin-1β on apoptosis in endometrial cell cultures from patients with endometriosis and controls. J Reprod Immunol 2010; 84 (2) 193-198
  • 68 Quenby S, Nik H, Innes B , et al. Uterine natural killer cells and angiogenesis in recurrent reproductive failure. Hum Reprod 2009; 24 (1) 45-54
  • 69 Ashkar AA, Di Santo JP, Croy BA. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med 2000; 192 (2) 259-270
  • 70 Guimond MJ, Wang B, Croy BA. Engraftment of bone marrow from severe combined immunodeficient (SCID) mice reverses the reproductive deficits in natural killer cell-deficient tg epsilon 26 mice. J Exp Med 1998; 187 (2) 217-223
  • 71 Greenwood JD, Minhas K, di Santo JP, Makita M, Kiso Y, Croy BA. Ultrastructural studies of implantation sites from mice deficient in uterine natural killer cells. Placenta 2000; 21 (7) 693-702
  • 72 Ashkar AA, Croy BA. Functions of uterine natural killer cells are mediated by interferon gamma production during murine pregnancy. Semin Immunol 2001; 13 (4) 235-241
  • 73 Linzke N, Schumacher A, Woidacki K, Croy BA, Zenclussen AC. Carbon monoxide promotes proliferation of uterine natural killer cells and remodeling of spiral arteries in pregnant hypertensive heme oxygenase-1 mutant mice. Hypertension 2014; 63 (3) 580-588
  • 74 Jensen F, Woudwyk M, Teles A , et al. Estradiol and progesterone regulate the migration of mast cells from the periphery to the uterus and induce their maturation and degranulation. PLoS ONE 2010; 5 (12) e14409
  • 75 Drudy L, Sheppard B, Bonnar J. Mast cells in the normal uterus and in dysfunctional uterine bleeding. Eur J Obstet Gynecol Reprod Biol 1991; 39 (3) 193-201
  • 76 Woidacki K, Popovic M, Metz M , et al. Mast cells rescue implantation defects caused by c-kit deficiency. Cell Death Dis 2013; 4: e462
  • 77 Woidacki K, Jensen F, Zenclussen AC. Mast cells as novel mediators of reproductive processes. Front Immun 2013; 4
  • 78 Strzemienski PJ, Dyer RM, Sertich PL, Garcia MC, Kenney RM. Bactericidal activity of peripheral blood neutrophils during the oestrous cycle and early pregnancy in the mare. J Reprod Fertil 1987; 80 (1) 289-293
  • 79 Wood GA, Fata JE, Watson KLM, Khokha R. Circulating hormones and estrous stage predict cellular and stromal remodeling in murine uterus. Reproduction 2007; 133 (5) 1035-1044
  • 80 Sasaki S, Nagata K, Kobayashi Y. Regulation of the estrous cycle by neutrophil infiltration into the vagina. Biochem Biophys Res Commun 2009; 382 (1) 35-40
  • 81 Salamonsen LA, Lathbury LJ. Endometrial leukocytes and menstruation. Hum Reprod Update 2000; 6 (1) 16-27
  • 82 Katila T. Post-mating inflammatory responses of the uterus. Reprod Domest Anim 2012; 47 (Suppl. 05) 31-41
  • 83 Lin YJ, Lai MD, Lei HY, Wing LY. Neutrophils and macrophages promote angiogenesis in the early stage of endometriosis in a mouse model. Endocrinology 2006; 147 (3) 1278-1286
  • 84 Wiesenfeld HC, Heine RP, Krohn MA , et al. Association between elevated neutrophil defensin levels and endometritis. J Infect Dis 2002; 186 (6) 792-797
  • 85 Tachi C, Tachi S. Macrophages and implantation. Ann N Y Acad Sci 1986; 476: 158-182
  • 86 Miller L, Hunt JS. Sex steroid hormones and macrophage function. Life Sci 1996; 59 (1) 1-14
  • 87 Mackler AM, Iezza G, Akin MR, McMillan P, Yellon SM. Macrophage trafficking in the uterus and cervix precedes parturition in the mouse. Biol Reprod 1999; 61 (4) 879-883
  • 88 Eidukaite A, Tamosiunas V. Endometrial and peritoneal macrophages: expression of activation and adhesion molecules. Am J Reprod Immunol 2004; 52 (2) 113-117
  • 89 Houser BL, Tilburgs T, Hill J, Nicotra ML, Strominger JL. Two unique human decidual macrophage populations. J Immunol 2011; 186 (4) 2633-2642
  • 90 Arck PC, Ferrick DA, Steele-Norwood D , et al. Murine T cell determination of pregnancy outcome. Cell Immunol 1999; 196 (2) 71-79
  • 91 Szekeres-Bartho J, Barakonyi A, Miko E, Polgar B, Palkovics T. The role of gamma/delta T cells in the feto-maternal relationship. Semin Immunol 2001; 13 (4) 229-233
  • 92 Mincheva-Nilsson L. Pregnancy and gamma/delta T cells: taking on the hard questions. Reprod Biol Endocrinol 2003; 1: 120
  • 93 Nagaeva O, Bondestam K, Olofsson J, Damber MG, Mincheva-Nilsson L. An optimized technique for separation of human decidual leukocytes for cellular and molecular analyses. Am J Reprod Immunol 2002; 47 (4) 203-212
  • 94 Zenclussen AC, Olivieri DN, Dustin ML, Tadokoro CE. In vivo multiphoton microscopy technique to reveal the physiology of the mouse uterus. Am J Reprod Immunol 2013; 69 (3) 281-289
  • 95 Plaks V, Birnberg T, Berkutzki T , et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest 2008; 118 (12) 3954-3965
  • 96 Zenclussen ML, Thuere C, Ahmad N , et al. The persistence of paternal antigens in the maternal body is involved in regulatory T-cell expansion and fetal-maternal tolerance in murine pregnancy. Am J Reprod Immunol 2010; 63 (3) 200-208
  • 97 Schumacher A, Wafula PO, Teles A , et al. Blockage of heme oxygenase-1 abrogates the protective effect of regulatory T cells on murine pregnancy and promotes the maturation of dendritic cells. PLoS ONE 2012; 7 (8) e42301
  • 98 Juretic K, Strbo N, Crncic TB, Laskarin G, Rukavina D. An insight into the dendritic cells at the maternal-fetal interface. Am J Reprod Immunol 2004; 52 (6) 350-355
  • 99 Lee SK, Kim JY, Lee M, Gilman-Sachs A, Kwak-Kim J. Th17 and regulatory T cells in women with recurrent pregnancy loss. Am J Reprod Immunol 2012; 67 (4) 311-318
  • 100 Hirata T, Osuga Y, Takamura M , et al. Recruitment of CCR6-expressing Th17 cells by CCL 20 secreted from IL-1 beta-, TNF-alpha-, and IL-17A-stimulated endometriotic stromal cells. Endocrinology 2010; 151 (11) 5468-5476
  • 101 Teles A, Schumacher A, Kühnle MC , et al. Control of uterine microenvironment by foxp3(+) cells facilitates embryo implantation. Front Immunol 2013; 4: 158
  • 102 White HD, Crassi KM, Givan AL , et al. CD3+ CD8+ CTL activity within the human female reproductive tract: influence of stage of the menstrual cycle and menopause. J Immunol 1997; 158 (6) 3017-3027
  • 103 Kallikourdis M, Andersen KG, Welch KA, Betz AG. Alloantigen-enhanced accumulation of CCR5+ 'effector' regulatory T cells in the gravid uterus. Proc Natl Acad Sci U S A 2007; 104 (2) 594-599
  • 104 Arruvito L, Sanz M, Banham AH, Fainboim L. Expansion of CD4+CD25+and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J Immunol 2007; 178 (4) 2572-2578
  • 105 Jasper MJ, Tremellen KP, Robertson SA. Primary unexplained infertility is associated with reduced expression of the T-regulatory cell transcription factor Foxp3 in endometrial tissue. Mol Hum Reprod 2006; 12 (5) 301-308
  • 106 Schumacher A, Brachwitz N, Sohr S , et al. Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. J Immunol 2009; 182 (9) 5488-5497
  • 107 Schumacher A, Heinze K, Witte J , et al. Human chorionic gonadotropin as a central regulator of pregnancy immune tolerance. J Immunol 2013; 190 (6) 2650-2658
  • 108 Teles A, Thuere C, Wafula PO, El-Mousleh T, Zenclussen ML, Zenclussen AC. Origin of Foxp3(+) cells during pregnancy. Am J Clin Exp Immunol 2013; 2 (3) 222-233