Planta Med 2015; 81(17): 1614-1620
DOI: 10.1055/s-0035-1545840
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Intensified Separation of Steviol Glycosides from a Crude Aqueous Extract of Stevia rebaudiana Leaves Using Centrifugal Partition Chromatography

Jane Hubert
1   Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, Reims, France
,
Nicolas Borie
1   Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, Reims, France
,
Sébastien Chollet
1   Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, Reims, France
,
Joël Perret
2   Stevia Natura, Riom, France
,
Claire Barbet-Massin
3   Laboratoire dʼAgro-physiologie, UMR INRA-EI Purpan 1054, EI Purpan, Toulouse, France
,
Monique Berger
3   Laboratoire dʼAgro-physiologie, UMR INRA-EI Purpan 1054, EI Purpan, Toulouse, France
,
Jean Daydé
3   Laboratoire dʼAgro-physiologie, UMR INRA-EI Purpan 1054, EI Purpan, Toulouse, France
,
Jean-Hugues Renault
1   Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, Reims, France
› Author Affiliations
Further Information

Publication History

received 31 October 2014
revised 30 January 2015

accepted 09 February 2015

Publication Date:
23 March 2015 (online)

Abstract

Aqueous extracts of Stevia rebaudiana leaves have been approved since 2008 by the Joint Expert Committee for Food Additives as sugar substitutes in many food and beverages in Western and Far East Asian countries. The compounds responsible for the natural sweetness of Stevia leaves include a diversity of diterpenoid glycosides derived from a steviol skeleton. These steviol glycosides also exhibit a low calorific value as well as promising therapeutic applications, particularly for the treatment of sugar metabolism disturbances. In this work, centrifugal partition chromatography is proposed as an efficient technical alternative to purify steviol glycosides from crude aqueous extracts of Stevia leaves on a multigram scale. Two different commercial instruments, including an ASCPC250® and a FCPE300® made of columns containing 1890 and 231 twin-cells, respectively, were evaluated and compared. All experiments were performed with a polar biphasic solvent system composed of ethyl acetate, n-butanol, and water in a gradient elution mode. When using the 1890 partition cell centrifugal partition chromatography column of 250 mL, 42 mg of stevioside, 68 mg of dulcoside A, and 172 mg of rebaudioside A, three major constituents of the initial extract were obtained from 1 g of the initial mixture at purities of 81 %, 83 %, and 99 %, respectively. The productivity was further improved by intensifying the procedure on the 231 partition cell centrifugal partition chromatography column of 303 mL with the sample mass loading increased up to 5 g, resulting in the recovery of 1.2 g of stevioside, 100 mg of dulcoside A, and 1.1 g of rebaudioside A at purities of 79 %, 62 %, and 98 %, respectively. The structures of the isolated compounds were validated by HPLC-UV, ESI-MS, 1H, and 13C NMR analyses. Altogether, the results demonstrate that the column design (i.e., the partition cell number) is an important aspect to be considered for a larger scale centrifugal partition chromatography isolation of Stevia-derived natural sweeteners.

Supporting Information

 
  • References

  • 1 Hanson JR, De Oliveira BH. Stevioside and related sweet diterpenoid glycosides. Nat Prod Rep 1993; 10: 301-309
  • 2 Brandle JE, Starratt AN, Gijzen M. Stevia rebaudiana: Its agricultural, biological, and chemical properties. Can J Plant Sci 1998; 78: 527-536
  • 3 Herranz-Lopez M, Barrajon-Catalan E, Beltran-Debon R, Joven J, Micol V. Potential medicinal benefits of high intensity sweetener from Stevia . Int Sugar J 2011; 113: 792-797
  • 4 Lemus-Mondaca R, Vega-Galvez A, Zura-Bravo L, Ah-Hen K. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 2012; 132: 1121-1132
  • 5 Chatsudthipong V, Muanprasat C. Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Ther 2009; 121: 41-54
  • 6 Brown RJ, Rother KI. Non-nutritive sweeteners and their role in the gastrointestinal tract. J Clin Endocrinol Metab 2012; 97: 2597-2605
  • 7 Tirapelli CR, Ambrosio SR, de Oliveira AM, Tostes RC. Hypotensive action of naturally occurring diterpenes: a therapeutic promise for the treatment of hypertension. Fitoterapia 2010; 81: 690-702
  • 8 Kedik SA, Yartsev EI, Stanishevskaya IE. Antiviral activity of dried extract of Stevia . Pharm Chem J 2009; 43: 198-199
  • 9 Takahashi K, Matsuda M, Ohashi K, Taniguchi K, Nakagomi O, Abe Y, Mori S, Sato N, Okutani K, Shigeta S. Analysis of anti-rotavirus activity of extract from Stevia rebaudiana . Antiviral Res 2001; 49: 15-24
  • 10 Gregersen S, Jeppesen PB, Holst JJ, Hermansen K. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 2004; 53: 73-76
  • 11 Barwal I, Sood A, Sharma M, Singh B, Yadav SC. Development of stevioside Pluronic-F-68 copolymer based PLA-nanoparticles as an antidiabetic nanomedicine. Colloids Surf B Biointerfaces 2013; 101: 510-516
  • 12 Mohd-Radzman NH, Ismail WIW, Adam Z, Jaapar SS, Adam A. Potential Roles of Stevia rebaudiana Bertoni in Abrogating Insulin Resistance and Diabetes: A Review. Evid Based Complement Alternat Med 2013; 2013: 718049
  • 13 Cacciola F, Delmonte P, Jaworska K, Dugo P, Mondello L, Rader JL. Employing ultra high pressure liquid chromatography as the second dimension in a comprehensive two-dimensional system for analysis of Stevia rebaudiana extracts. J Chromatogr A 2011; 1218: 2012-2018
  • 14 Well C, Frank O, Hofmann T. Quantitation of sweet steviol glycosides by means of a HILIC-MS/MS-SIDA approach. J Agric Food Chem 2013; 61: 11312-11320
  • 15 Woelwer-Rieck U, Lankes C, Wawrzun A, Wust M. Improved HPLC method for the evaluation of the major steviol glycosides in leaves of Stevia rebaudiana . Eur Food Res Technol 2010; 231: 581-588
  • 16 Tada A, Takahashi K, Ishizuki K, Sugimoto N, Suematsu T, Arifuku K, Tahara M, Akiyama T, Ito Y, Yamazaki T, Akiyama H, Kawamura Y. Absolute quantitation of stevioside and rebaudioside A in commercial standards by quantitative NMR. Chem Pharm Bull 2013; 61: 33-38
  • 17 Gardana C, Scaglianti M, Simonetti P. Evaluation of steviol and its glycosides in Stevia rebaudiana leaves and commercial sweetener by ultra-high-performance liquid chromatography-mass spectrometry. J Chromatogr A 2010; 1217: 1463-1470
  • 18 Huang XY, Fu JF, Di DL. Preparative isolation and purification of steviol glycosides from Stevia rebaudiana Bertoni using high-speed counter-current chromatography. Sep Purif Technol 2010; 71: 220-224
  • 19 Foucault AP. Theory of centrifugal partition chromatography. In: Foucault AP, editor. Centrifugal partition chromatography; chromatographic science series 1995. New York: Marcel Dekker; 1995. 68. 25-50
  • 20 Berthod A, Deroux Jean M, Bully M. Liquid polarity and stationary-phase retention in countercurrent chromatography. In: Conway WD, Petroski RJ, editors Modern countercurrent chromatography. Washington: American Chemical Society; 1995: 16-34
  • 21 Berthod A, Maryutina T, Spivakov B, Shpigun O, Sutherland IA. Countercurrent chromatography in analytical chemistry. Pure Appl Chem 2009; 81: 355-387
  • 22 Marchal L, Intes O, Foucault A, Legrand J, Nuzillard JM, Renault JH. Rational improvement of centrifugal partition chromatographic settings for the production of 5-n-alkylresorcinols from wheat bran lipid extract. I. Flooding conditions–optimizing the injection step. J Chromatogr A 2003; 1005: 51-62
  • 23 Marchal L, Foucault AP, Patissier G, Rosant JM, Legrand J. Chapter 5. Centrifugal partition chromatography: an engineering approach. In: Berthod A, editor Countercurrent chromatography: the support-free liquid stationary phase. New York: Elsevier; 2002: 115-157
  • 24 Berthod A. Countercurrent chromatography: the support-free liquid stationary phase. New York: Elsevier; 2002
  • 25 Marchal L, Legrand J, Foucault A. Centrifugal partition chromatography: a survey of its history, and our recent advances in the field. Chem Rec 2003; 3: 133-143
  • 26 Sticher O. Natural product isolation. Nat Prod Rep 2008; 25: 517-554
  • 27 Hostettmann K, Marston A, Hostettmann M. Preparative chromatography techniques: applications in natural product isolation. Berlin, Heidelberg: Springer Science & Business Media; 1998
  • 28 Marston A, Hostettmann K. Developments in the application of counter-current chromatography to plant analysis. J Chromatogr A 2006; 1112: 181-194
  • 29 Pauli GF, Pro SM, Friesen JB. Countercurrent separation of natural products. J Nat Prod 2008; 71: 1489-1508
  • 30 Hubert J, Ple K, Hamzaoui M, Renault JH. Polyphenol purification by solid support-free liquid–liquid chromatography (CCC, CPC). In: Ramawat KG, Mérillon JM, editors Natural products. Berlin, Heidelberg: Springer-Verlag; 2013: 2145-2172
  • 31 Kotland A, Hadef I, Renault JH, Hamzaoui M, Martinez A, Borie N, Guilleret A, Reynaud R, Hubert J. Gradient elution method in centrifugal partition chromatography for the separation of a complex sophorolipid mixture obtained from Candida bombicola yeasts. J Sep Sci 2013; 36: 1362-1369
  • 32 Chaturvedula V, Upreti M, Prakash I. Structures of the novel α-glucosyl linked diterpene glycosides from Stevia rebaudiana . Carbohydr Res 2011; 346: 2034-2038
  • 33 Hamzaoui M, Hubert J, Reynaud R, Marchal L, Foucault A, Renault JH. Strong ion exchange in centrifugal partition extraction (SIX-CPE): Effect of partition cell design and dimensions on purification process efficiency. J Chromatogr A 2012; 1247: 18-25
  • 34 Hamzaoui M, Renault JH, Reynaud R, Hubert J. Centrifugal partition extraction in the pH-zone refining displacement mode: an efficient strategy for the screening and isolation of bioactive phenolic compounds. J Chromatogr B 2013; 937: 7-12
  • 35 Hamzaoui M, Hubert J, Hadj-Salem J, Richard B, Harakat D, Marchal L, Foucault A, Lavaud C, Renault JH. Intensified extraction of ionized natural products by ion pair centrifugal partition extraction. J Chromatogr A 2011; 1218: 5254-5262
  • 36 Du QZ, Ke CQ, Ito Y. Separation of epigallocatechin gallate and gallocatechin using multiple instruments connected in series. J Liq Chromatogr Rel Technol 1998; 21: 203-208
  • 37 Wilke CR, Chang P. Correlation of diffusion coefficients in dilute solutions. AIChE J 1955; 1: 264-270