Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(16): 2253-2256
DOI: 10.1055/s-0035-1560050
DOI: 10.1055/s-0035-1560050
letter
The Ugi Reaction of Cyanoacetic Acid as a Route to Tetramic Acid Derivatives
Further Information
Publication History
Received: 29 April 2015
Accepted after revision: 29 June 2015
Publication Date:
12 August 2015 (online)
Abstract
Ugi adducts of cyanoacetic acid and aromatic aldehydes are readily cyclized under basic conditions leading to one-pot formation of aminopyrrolinone derivatives.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560050.
- Supporting Information
-
References and Notes
- 1a Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 1b Bienaymé H, Hulme C, Oddon G, Schmitt P. Chem. Eur. J. 2000; 6: 3321
- 1c Ugi I, Werner B, Dömling A. Molecules 2003; 8: 53
- 1d Dömling A. Curr. Opin. Chem. Biol. 2002; 6: 306
- 1e Multicomponent Reactions. Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
- 1f Dömling A. Chem. Rev. 2006; 106: 17-89
- 1g Multicomponent Reactions in Organic Synthesis. Zhu J, Wang Q, Wang M. Wiley-VCH; Weinheim: 2014
- 2 Marcaccini S, Torroba T. Post-condensation Modifications of the Passerini and Ugi Reactions . In Multicomponent Reactions . Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005. Chap. 2, 33-72
- 3 Bossio R, Marcaccini S, Pepino R. Synthesis 1994; 765
- 4a Marcaccini S, Pepino R, Pozo MC, Basurto S, Garcia-Valverde M, Torroba T. Tetrahedron Lett. 2004; 45: 3999
- 4b Gordon CP, Young KA, Hizartzidis L, Deane FM, McCluskey A. Org. Biomol. Chem. 2011; 9: 1419
- 5 Neo AG, Carillo RM, Barriga S, Moman E, Marcaccini S, Marcos CF. Synlett 2007; 327
- 6 Marcos CF, Marcaccini S, Pepino R, Polo C, Torroba T. Synthesis 2003; 691
- 7a Bossio R, Marcos CF, Marcaccini S, Pepino R. Synthesis 1997; 1389
- 7b Salcedo A, Neuville L, Zhu J. J. Org. Chem. 2008; 73: 3600
- 7c El Kaïm L, Grimaud L, Ibarra T, Montano-Gamez R. Chem. Commun. 2008; 11: 1350
- 7d El Kaïm L, Grimaud L, Wagschal S. J. Org. Chem. 2010; 75: 5343
- 7e El Kaim L, Le Goff X.-F, Grimaud L, Schiltz A. Org. Lett. 2011; 13: 534
- 7f Ben Abdessalem A, Abderrahim R, Agrebie A, Dos Santos A, El Kaïm L, Komesky A. Chem. Commun. 2015; 51: 1116
- 8 Typical Procedure for 2a To a stirred solution of 3-nitrobenzaldehyde (305 mg, 2 mmol) in anhydrous MeOH (0.5 M) under argon at r.t. was added aniline (187 mg, 2 mmol). After 5 min, cyclohexylisocyanide (222 mg, 2 mmol) and cyanoacetic acid (171 mg, 2 mmol) were sequentially added. The resulting mixture was stirred at r.t. for 4 h. Subsequently, anhydrous MeOH was added to obtain a 0.2 M solution and K2CO3 (0.2 equiv) was added. The resulting mixture was stirred and heated at 65 °C for 1 h. Evaporation of the solvent under reduced pressure, addition of CH2Cl2 and extraction afforded the crude product that was purified by silica gel column chromatography (PE–Et2O, 2:8). Compound 2a was obtained as a white solid (mp 231–233 °C) in 74% isolated yield (620 mg, 1.48 mmol); Rf = 0.17 (PE–Et2O, 2:8). 1H NMR (400 MHz, DMSO): δ = 8.31 (t, J = 2.0 Hz, 1 H, ArH), 8.18 (d, J = 8.5 Hz, 1 H, NH), 8.10 (ddd, J = 0.9, 2.3, 8.2 Hz, 1 H, ArH), 7.70–7.68 (m, 1 H, ArH), 7.56–7.52 (m, 1 H, ArH), 7.13–7.12 (m, 4 H, ArH), 6.96–6.92 (m, 1 H, ArH), 6.60 (s, 2 H, NH2), 4.87 (s, 1 H, CH), 3.76–3.67 (m, 1 H, CH), 1.66–1.65 (m, 3 H, CyH), 1.57–1.55 (m, 2 H, CyH), 1.35–1.17 (m, 4 H, CyH), 1.04–0.97 (m, 1 H, CyH) ppm. 13C NMR (100 MHz, DMSO): δ = 172.8 (CO), 165.9 (CO), 164.5 (CNH2), 147.2 (ArC), 139.2 (ArC), 137.8 (ArC), 135.1 (ArC), 129.5 (ArC), 128.2 (ArC), 124.1 (ArC), 123.8 (ArC), 123.5 (ArC), 122.9 (ArC), 88.3 (CH), 75.0 (Cquat), 48.9 (CH), 31.7 (CyC), 25.1 (CyC), 25.0 (CyC), 25.0 (CyC) ppm. FTIR: ν = 1693 (CO), 1673 (CO), 1617 (NH2), 1529 (NO2), 1348 (NO2) cm–1. HRMS (ESI+/TOF): m/z calcd for C23H25N4O4 +: 421.1870; found: 421.1886.
- 9a Hayashi Y, Shoji M, Yamaguchi S, Mukaiyama T, Yamaguchi J, Kakeya H, Osada H. Org. Lett. 2003; 5: 2287
- 9b Yamaguchi J, Kakeya H, Uno T, Shoji M, Osada H, Hayashi Y, Shoji M. Angew. Chem. Int. Ed. 2005; 40: 3170
- 9c Corey EJ, Reichard GA. J. Am. Chem. Soc. 1992; 114: 10677
- 10a Husain A, Alam MM, Shaharyar M, Lal SJ. Enzym Inhib. Med. Chem. 2010; 25: 54
- 10b Hashem AI, Youssef AS, Kandeel KA, Abou-Elmagd WS. Eur. J. Med. Chem. 2007; 42: 934
- 10c Kenda BM, Matagne AC, Talaga PE, Pasau PM, Differding E, Lallemand BI, Frycia AM, Moureau FG, Klitgaard HV, Gillard MR, Fuks B, Michel P. J. Med. Chem. 2004; 47: 530
- 11a Daniel Bellus D, Fory W. US 4013445, 1977
- 11b Nobuyuki O, Toshihiro N, Akira T, Shigehiko T, Yasunori O. US 5312929, 1994
- 12 Baasner B, Fischer R, Widdig A, Lürssen K, Santel H.-J, Schmidt RR. US 5338560, 1994
- 13 Matsuo K, Tanaka K. Yakugaku Zasshi 1984; 104: 1004
- 14 Arnold T, Unverferth K, Lankau H.-J, Rostock A, Tober C, Rundfeldt C, Bartsch R. US 6500821, 2002
- 15a Lee C.-W, Lira R, Dutra J, Ogilvie K, O’Neill BT, Brodney M, Helal C, Young J, Lachapelle E, Sakya S, Murray JC. J. Org. Chem. 2013; 78: 2661
- 15b Zali-Boeini H, Mobin M, Hajibabaei K, Ghani M. J. Org. Chem. 2012; 77: 5908
For reviews, see:
For some Ugi postcondensations involving the peptidyl position of Ugi adducts, see: