Subscribe to RSS
DOI: 10.1055/s-0035-1560352
Synthesis of Fluorinated 1,4,5-Substituted 1,2,3-Triazoles by RuAAC Reaction
Publication History
Received: 06 August 2015
Accepted after revision: 09 September 2015
Publication Date:
02 October 2015 (online)
Abstract
Herein, we report a convenient methodology for the synthesis of fluorinated 1,4,5-substituted 1,2,3-triazoles. The azide–alkyne cycloaddition reaction of internal alkynes catalyzed by a ruthenium complex efficiently afforded 2,2,2-trifluoroethyl- and (trifluoromethyl)thio-substituted 1,2,3-triazoles. Two types of internal alkyne, 1-aryl-2-(2,2,2-trifluoroethyl)acetylenes and 1-aryl-2-[(trifluoromethyl)thio]acetylenes, were used. This ruthenium-catalyzed azide–alkyne cycloaddition reaction was highly regioselective giving 4-aryl-5-(2,2,2-trifluoroethyl)- or 4-aryl-5-[(trifluoromethyl)thio]-1H-1,2,3-triazoles. Various functionalities were tolerated in the alkyl and aryl azides by this Huisgen 1,3-dipolar cycloaddition. All the triazoles were characterized by 1H, 13C, and 19F NMR, IR, and HRMS (or elemental analysis). Several triazoles were characterized by single-crystal X-ray structural analysis to confirm the regioselectivity of 1,2,3-triazole formation.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560352.
- Supporting Information
-
References
- 1a Uneyama K. Organofluorine Chemistry . Blackwell; Oxford: 2006
- 1b Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley-VCH; Weinheim: 2004
- 1c Chambers RD. Fluorine in Organic Chemistry . Blackwell; Oxford: 2004
- 1d Hiyama T. Organofluorine Compounds: Chemistry and Applications. Springer; New York: 2000
- 1e O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 2a Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley; Chichester: 2009
- 2b Bégué J.-P, Bonnet-Delphon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley; Hoboken: 2008
- 2c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 2d Müller K, Faeh C, Diederich F. Science (Washington, D.C.) 2007; 317: 1881
- 2e Thayer AM. Chem. Eng. News 2006; 84 (23): 15
- 2f Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
- 2g Xu XH, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
- 2h Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
- 2i Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
- 2j Wang S.-M, Han J.-B, Zhang C.-P, Qin H.-L, Xiao J.-C. Tetrahedron 2015; in press; DOI: 10.1016/j.tet.2015.06.056
- 2k Zhang C.-P, Chen Q.-Y, Guo Y, Xiao J.-C, Gu Y.-C. Chem. Soc. Rev. 2012; 41: 4536
- 2l Zhang C.-P, Chen Q.-Y, Guo Y, Xiao J.-C. Tetrahedron 2013; 69: 10955
- 2m Zhang C.-P, Chen Q.-Y, Guo Y, Xiao J.-C, Gu Y.-C. Coord. Chem. Rev. 2014; 261: 28
- 3a Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
- 3b Moses JE, Moorhouse AD. Chem. Soc. Rev. 2007; 36: 1249
- 3c Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
- 3d Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
- 3e Chow H.-F, Chui T.-K, Qi Q. Synlett 2014; 25: 2246
- 3f Astruc D, Ciganda R, Deraedt C, Gatard S, Liang L, Li N, Ornelas C, Rapakousiou A, Ruiz J, Wang D, Wang Y, Zhao P. Synlett 2015; 26: 1437
- 4a Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6: 2696
- 4b Li L.-J, Zhang Y.-Q, Zhang Y, Zhu A.-L, Zhang G.-S. Chin. Chem. Lett. 2014; 25: 1161
- 4c Li Q.-H, Ding Y, Huang N.-W. Chin. Chem. Lett. 2014; 25: 1469
- 5 Gao H, Shreeve JM. Chem. Rev. 2011; 111: 7377
- 6 Huang Y, Read RW, Wang X. Aust. J. Chem. 2010; 63: 802
- 7a Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 7b Bégué J.-P, Bonnet-Delphon D. J. Fluorine Chem. 2006; 127: 992
- 7c Kirk KL. J. Fluorine Chem. 2006; 127: 1013
- 7d Isanbor C, O’Hagan D. J. Fluorine Chem. 2006; 127: 303
- 7e Alonso C, de Marigorta EM, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
- 7f Zhang J, Jin C, Zhang Y. Chin. J. Org. Chem. 2014; 34: 662
- 7g Liu Y, Cao X.-F, Liu X, Cao Y.-B, Chu W.-J, Yang Y.-S. Chin. Chem. Lett. 2013; 24: 321
- 7h Cao X.-F, Chu W.-J, Cao Y.-B, Yang Y.-S. Chin. Chem. Lett. 2013; 24: 303
- 7i Zhang P, Russell MG, Jamison TF. Org. Process Res. Dev. 2014; 18: 1567
- 8 Huisgen R In 1,3-Dipolar Cycloaddition Chemistry . Padwa A. Wiley; New York: 1984
- 9a Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
- 9b Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
- 9c Bunz UH. F. Synlett 2013; 24: 1899
- 10a Zhang L, Chen X, Xue P, Sun HH. Y, Williams ID, Sharpless KB, Fokin VV, Jia G. J. Am. Chem. Soc. 2005; 127: 15998
- 10b Boren BC, Narayan S, Rasmussen LK, Zhang L, Zhao H, Lin Z, Jia G, Fokin VV. J. Am. Chem. Soc. 2008; 130: 8923
- 10c Majireck MM, Weinreb SM. J. Org. Chem. 2006; 71: 8680
- 11 Ding S, Jia G, Sun J. Angew. Chem. Int. Ed. 2014; 53: 1877
- 12a Hein JE, Tripp JC, Krasnova LB, Sharpless KB, Fokin VV. Angew. Chem. Int. Ed. 2009; 48: 8018
- 12b Spiteri C, Moses JE. Angew. Chem. Int. Ed. 2010; 49: 31
- 13 Worrell BT, Ellery SP, Fokin VV. Angew. Chem. Int. Ed. 2013; 52: 13037
- 14 Ito S, Satoh A, Nagatomi Y, Hirata Y, Suzuki G, Kimura T, Satow A, Maehara S, Hikichi H, Hata M, Kawamoto H, Ohta H. Bioorg. Med. Chem. 2008; 16: 9817
- 15 Li L, Hao G, Zhu A, Fan X, Zhang G, Zhang L. Chem. Eur. J. 2013; 19: 14403
- 16a Li L, Hao G, Zhu A, Liu S, Zhang G. Tetrahedron Lett. 2013; 54: 6057
- 16b Fu D, Zhang J, Cao S. J. Fluorine Chem. 2013; 156: 170
- 16c Carcenac Y, David-Quillot F, Abarbri M, Duchêne A, Thibonnet J. Synthesis 2013; 45: 633
- 16d Barsoum DN, Brassard CJ, Deeb JH. A, Okashah N, Sreenath K, Simmons JT, Zhu L. Synthesis 2013; 45: 2372
- 16e Li L, Shang T, Ma X, Guo H, Zhu A, Zhang G. Synlett 2015; 26: 695
- 17a Shashank AB, Karthik S, Madhavachary R, Ramachary DB. Chem. Eur. J. 2014; 20: 16877
- 17b Ramachary DB, Ramakumar K, Narayana VV. Chem. Eur. J. 2008; 14: 9143
- 18a Xie Y.-Y, Wang Y.-C, Qu H.-E, Tan X.-C, Wang H.-S, Pan Y.-M. Adv. Synth. Catal. 2014; 356: 3347
- 18b Janreddy D, Kavala V, Kuo C.-W, Chen W.-C, Ramesh C, Kotipalli T, Kuo T.-S, Chen M.-L, He C.-H, Yao C.-F. Adv. Synth. Catal. 2013; 355: 2918
- 19 Li W, Du Z, Huang J, Jia Q, Zhang K, Wang J. Green Chem. 2014; 16: 3003
- 20a Chen Z, Yan Q, Liu Z, Xu Y, Zhang Y. Angew. Chem. Int. Ed. 2013; 52: 13324
- 20b Chen Z, Yan Q, Liu Z, Zhang Y. Chem. Eur. J. 2014; 20: 17635
- 20c Chen Z, Yan Q, Yi H, Liu Z, Lei A, Zhang Y. Chem. Eur. J. 2014; 20: 13692
- 21 Okusu S, Tokunaga E, Shibata N. Org. Lett. 2015; 17: 3802
- 22a Kawai H, Furukawa T, Nomura Y, Tokunaga E, Shibata N. Org. Lett. 2011; 13: 3596
- 22b Zhao TS. N, Szabó KJ. Org. Lett. 2012; 14: 3966
- 22c Miyake Y, Ota S, Shibata M, Nakajima K, Nishibayashi Y. Chem. Commun. 2013; 49: 7809
- 22d Liu C.-B, Meng W, Li F, Wang S, Nie J, Ma J.-A. Angew. Chem. Int. Ed. 2012; 51: 6227
- 22e Feng Y.-S, Xie C.-Q, Qiao W.-L, Xu H.-J. Org. Lett. 2013; 15: 936
- 22f Hwang J, Park K, Choe J, Min H, Song KH, Lee S. J. Org. Chem. 2014; 79: 3267
- 22g Han E.-J, Sun Y, Shen Q, Chen Q.-Y, Guo Y, Huang Y.-G. Org. Chem. Front. 2015; 2: 1379
- 22h Han J.-B, Hao J.-H, Zhang C.-P, Qin H.-L. Curr. Org. Chem. 2015; 19: 1554
- 23a Chen C, Chu L, Qing F.-L. J. Am. Chem. Soc. 2012; 134: 12454
- 23b Shao X, Wang X, Yang T, Lu L, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 3457
- 23c Baert F, Colomb J, Billard T. Angew. Chem. Int. Ed. 2012; 51: 10382
- 23d Zhu S.-Q, Xu X.-H, Qing F.-L. Eur. J. Org. Chem. 2014; 4453