Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(16): 2318-2322
DOI: 10.1055/s-0035-1560460
DOI: 10.1055/s-0035-1560460
letter
Synthesis of Azepino[4,5-b]indole Analogues via 7-endo-Selective Cyclization of Isocyanoacetates and Indole-1,2-alkynylaldehydes: An Approach towards the Chromoazepinone Core
Further Information
Publication History
Received: 15 May 2015
Accepted after revision: 20 July 2015
Publication Date:
01 September 2015 (online)
Abstract
Synthesis of azepino[4,5-b]indole analogues via copper-catalyzed 7-endo-selective heteroannulation is reported. This strategy involves the Knoevenagel condensation of indole-1,2-alkynylaldehydes and isocyanoacetates, followed by copper-catalyzed 7-endo-selective annulation gives the product. This approach is applied towards the synthesis of the chromoazepinone core.
Key words
azepino[4,5-b]indole - 7-endo cyclization - copper catalysis - indole-1,2-alkynylaldehyde - isocyanoacetate - chromoazepinoneSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560460.
- Supporting Information
-
References and Notes
- 1 A comprehensive review on the biological importance of indole, see: Sharma V, Kumar P, Pathak D. J. Heterocycl. Chem. 2010; 47: 491
- 2a WO 02/24700, 2002 ; Chem. Abstr. 2002, 136, 279440p
- 2b WO 02/24701, 2002 ; Chem. Abstr. 2002, 136, 279356r
- 2c Kraxner J, Hubner H, Gmeiner P. Arch. Pharm. Pharm. Med. Chem. 2000; 333: 287
- 2d Asche G, Kunz H, Nar H, Koppen H, Breim H, Pook K.-H, Schiller PW, Chung NN, Lemieux C, Esser F. J. Peptide Res. 1998; 51: 323
- 2e Esser F, Carpy A, Briem H, Koppen H, Pook K.-H. Int. J. Peptide Protein Res. 1995; 45: 540
- 2f Freter K. Liebigs Ann. Chem. 1969; 721: 101
- 2g Teuber H.-J, Cornelius D, Wolker U. Liebigs Ann. Chem. 1966; 696: 116
- 2h Mahboobi S, Bernauer K. Helv. Chim. Acta 1988; 71: 2034
- 2i Parsons RL, Berk JD, Kuehne ME. J. Org. Chem. 1993; 58: 7482
- 2j Reyes-Gutierrez PE, Torres-Ochoa RO, Martinez R, Miranda LD. Org. Biomol. Chem. 2009; 7: 1388
- 2k Nidhiry JE, Prasad KR. Synlett 2014; 25: 2585
- 3 Flatt B, Martin R, Wang T.-L, Mahaney P, Murphy B, Gu X.-H, Foster P, Li J, Pircher P, Petrowski M, Schulman I, Westin S, Wrobel J, Yan G, Bischoff E, Daige C, Mohan R. J. Med. Chem. 2009; 52: 904
- 4 Zheng D, Li S, Wu J. Org. Lett. 2012; 14: 2655
- 5a Dyker G, Stirner W, Henkel G. Eur. J. Org. Chem. 2000; 1433
- 5b Patil NT, Yamamoto Y. J. Org. Chem. 2004; 69: 5139
- 5c Sagar P, Fröhlich R, Würthwein E.-U. Angew. Chem. Int. Ed. 2004; 43: 5694 ; Angew. Chem. 2004, 116, 5812
- 5d Barluenga J, Vazquez-Villa H, Merino I, Ballesteros A, Gonzalez JM. Chem. Eur. J. 2006; 12: 5790
- 5e Asao N, Aikawap H. J. Org. Chem. 2006; 71: 5249
- 5f Godet T, Vaxelaire C, Michel C, Milet A, Belmont P. Chem. Eur. J. 2007; 13: 5632
- 5g Tsukamoto H, Ueno T, Kondo Y. Org. Lett. 2007; 9: 3033
- 5h Ding Q, Wu J. Adv. Synth. Catal. 2008; 350: 1850
- 5i Alfonsi M, Acqua MD, Facoetti D, Arcadi A, Abbiati G, Rossi E. Eur. J. Org. Chem. 2009; 2852
- 5j Patil NT, Konala A, Singh V, Reddy VV. N. Eur. J. Org. Chem. 2009; 5178
- 5k Yu X, Ye S, Wu J. Adv. Synth. Catal. 2010; 352: 2050
- 5l Teng T.-M, Liu RS. J. Am. Chem. Soc. 2010; 132: 9298
- 5m Verma AK, Rustagi V, Aggarwal T, Singh AP. J. Org. Chem. 2010; 75: 7691
- 5n Zhao X, Zhang X.-G, Tang R.-Y, DengC L, Li JH. Eur. J. Org. Chem. 2010; 4211
- 6 Hashmi AS. K, Yang W, Rominger F. Adv. Synth. Catal. 2012; 354: 1273
- 7 Keller L, Beaumont S, Liu J.-M, Thoret S, Bignon JS, Wdzieczak-Bakala J, Dauban P, Dodd RH. J. Med. Chem. 2008; 51: 3414
- 8 Mizuoka T, Toume K, Ishibashi M, Hoshino T. Org. Biomol. Chem. 2010; 8: 3157
- 9a The CCDC deposition number for compound 7 is 1040332. Formula: C28H25N3O5. Unit cell parameters: a = 11.8146(11); b = 12.3195(11); c = 18.619(2), space group: P-1.
- 9b The CCDC deposition number for compound 3d is 1040333. Formula: C29H24N2O3. Unit cell parameters: a = 12.811(13); b = 14.735(2); c = 13.872(3), space group: P21/n.
- 10a Prakash KS, Nagarajan R. Org. Lett. 2014; 16: 244
- 10b Unsworth WP, Cuthbertson JD, Taylor RJ. K. Org. Lett. 2013; 15: 3306
- 10c Trost BM, Dyker G, Kulawiec RJ. J. Am. Chem. Soc. 1990; 12: 7809
- 11 Prakash KS, Nagarajan R. Tetrahedron Lett. 2015; 56: 69
- 12 General Procedure for the Synthesis of Azepino[4,5-b]indole Derivatives 3a–h and 7 An oven-dried 10 mL round-bottomed flask equipped with a Teflon-coated magnetic stirring bar was charged with 1-methyl-3-(phenylethynyl)-1H-indole-2-carbaldehyde (1a, 0.05 g, 0.19 mmol) in MeCN (2 mL). Methyl isocyanoacetate (2a, 0.021 g, 0.21 mmol), Cu(OTf)2 (7 mg, 5 mol%), and DBU (0.43 g, 0.29 mmol) were added, and the mixture was stirred at 90 °C for 6 h. After completion of reaction (TLC), the mixture was cooled to r.t., and the solvent was evaporated under reduced pressure. Water was added, and the crude reaction mixture was extracted with EtOAc (3 × 20 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered, and the solvent removed under reduced pressure. The residue was purified by column chromatography on silica gel (20% EtOAc in hexanes) to afford the product 3a (0.05 g) in 72% yield. Rf = 0.32 (hexanes–EtOAc, 1:1); mp 160–162 °C. IR (KBr): 3151, 2936, 2874, 1692, 1648, 1578, 1457 cm–1. 1H NMR (500 MHz, TMS, CDCl3): δ = 8.13–8.10 (m, 2 H), 8.08 (s, 1 H), 8.05–7.98 (m, 1 H), 7.86 (s, 1 H), 7.84–7.82 (m, 2 H), 7.68 (s, 1 H), 7.48–7.30 (m, 6 H), 3.95 (s, 3 H), 3.87 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 163.9, 162.8, 138.4, 137.0, 134.2, 132.3, 129.0, 128.7, 128.4, 126.5, 126.0, 125.5, 123.0, 121.0, 119.5, 118.3, 117.3, 116.8, 109.9, 52.6, 30.4. HRMS (ESI-MS): m/z calcd for C22H18O3N2: 359.1396 [M + H]; found: 359.1395.
For selected examples, see: