Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(18): 2547-2552
DOI: 10.1055/s-0035-1560482
DOI: 10.1055/s-0035-1560482
letter
Selective Synthesis of Sulfoxides through Oxidation of Sulfides with Sodium Hypochlorite Pentahydrate Crystals
Further Information
Publication History
Received: 08 July 2015
Accepted after revision: 21 August 2015
Publication Date:
29 September 2015 (online)
Abstract
Oxidation of sulfides with sodium hypochlorite pentahydrate crystals (1.1 equiv) in an aqueous acetonitrile solution selectively produces the corresponding sulfoxides in high yields. This procedure is catalyst-free and environmentally benign.
-
References and Notes
- 1a Drabowicz J, Kielbsinski P, Mikolajczyk M. The Chemistry of Sulphone and Sulphoxide . Patai S, Rappoport Z, Stirling C. John Wiley and Sons; New York: 1988
- 1b Carreno MC. Chem. Rev. 1995; 95: 1717
- 1c Frenanez I, Khiar N. Chem. Rev. 2003; 103: 3651
- 1d Drabowicz J, Kielbasinski P, Zajac A, Wach-Panfitow P. Comprehensive Organic Synthesis . Knochel P, Molander GA. Elsevier; Amsterdam: 2014. 2nd ed., Vol. 6 131-174
- 2a For HNO3, see: Bordwell FG, Boutan PJ. J. Am. Chem. Soc. 1957; 79: 717
- 2b For MnO2, see: Edwards D, Stenlake JB. J. Chem. Soc. 1954; 3272
- 2c For NaIO4, see: Leonard NJ, Johnson CR. J. Org. Chem. 1962; 27: 282
- 2d For peracids, see: Overberger CG, Cummins RW. J. Am. Chem. Soc. 1953; 75: 4250
- 3a Li X, Ma R, He L.-N. Chin. Chem. Lett. 2015; 26: 539
- 3b Imada Y, Ohsaki M, Noguchi M, Maeda T, Fujiki M, Kawamorita S, Komiya N, Naota T. ChemCatChem 2015; 7: 99
- 3c Lang X, Leow WR, Zhao J, Chen X. Chem. Sci. 2015; 6: 1075
- 3d Lang X, Hao W, Leow WR, Li S, Zhao J, Chen X. Chem. Sci. 2015; 6: 5000
- 3e Murahashi S, Zhang D, Iida H, Miyawaki T, Uenaka M, Murano K, Meguro K. Chem. Commun. 2014; 50: 10295
- 3f Taketoshi A, Concepcion P, Garcia H, Corma A, Haruta M. Bull. Chem. Soc. Jpn. 2013; 86: 1412
- 3g Imada Y, Tonomura I, Komiya N, Naota T. Synlett 2013; 24: 1679
- 3h Imada Y, Kitagawa T, Wang H.-K, Komiya N, Naota T. Tetrahedron Lett. 2013; 54: 621
- 3i Zhang H, Chen C, Liu R. Synth. Commun. 2012; 42: 811
- 3j Yuan Y, Shi X, Liu W. Synlett 2011; 559
- 3k Chinnusamy T, Reiser O. ChemSusChem. 2010; 3: 1040
- 3l Tanaka H, Nishikawa H, Uchida T, Katsuki T. J. Am. Chem. Soc. 2010; 132: 12034
- 3m Xu H.-J, Lin Y.-C, Wan X, Yang C.-Y, Feng Y.-S. Tetrahedron 2010; 66: 8823
- 3n Zhang H, Chen C.-Y, Liu R.-H, Xu Q, Liu J.-H. Synth. Commun. 2008; 38: 4445
- 3o Motoshima K, Sato A, Yorimitsu H, Oshima K. Bull. Chem. Soc. Jpn. 2007; 80: 2229
- 3p Okun NM, Tarr JC, Hilleshiem DA, Zhang L, Hardcastle KI, Hill CL. J. Mol. Catal. A: Chem. 2006; 246: 11
- 3q Maayan G, Popovitz-Biro R, Neumann R. J. Am. Chem. Soc. 2006; 128: 4968
- 3r Imada Y, Iida H, Ono S, Murahashi S. J. Am. Chem. Soc. 2003; 125: 2868
- 3s Boring E, Geletii YV, Hill CL. J. Am. Chem. Soc. 2001; 123: 1625
- 3t Martin SE, Rossi LI. Tetrahedron Lett. 2001; 42: 7147
- 3u Dell’Anna MM, Mastrorilli P, Nobile CF. J. Mol. Catal. A: Chem. 1996; 108: 57
- 3v Imagawa K, Nagata T, Yamada Y, Mukaiyama T. Chem. Lett. 1995; 335
- 3w Nagata T, Imagawa K, Yamada T, Mukaiyama T. Bull. Chem. Soc. Jpn. 1995; 68: 3241
- 3x Aldea R, Alper H. J. Org. Chem. 1995; 60: 8365
- 3y Giannandrea R, Mastrorilli P, Nobile CF, Suranna GP. J. Mol. Catal. 1994; 94: 27
- 4 For a review, see: Kaczorowska K, Kolarska Z, Mitka K, Kowalski P. Tetrahedron 2005; 61: 8315
- 5a Nikoorazm M, Ghorbani-Choghamarani A, Noori N. Appl. Organomet. Chem. 2015; 29: 328
- 5b Frenzel R, Sathicq AG, Blanco MN, Romanelli GP, Pizzio LR. J. Mol. Catal. A: Chem. 2015; 403: 27
- 5c Sturala J, Bohacova S, Chudoba J, Metelkova R, Cibulka R. J. Org. Chem. 2015; 80: 2676
- 5d Doherty S, Knight JG, Carroll MA, Ellison JR, Hobson SJ, Stevens S, Hardacre C, Goodrich P. Green Chem. 2015; 17: 1559
- 5e Rostami A, Atashkar B. J. Mol. Catal. A: Chem. 2015; 398: 170
- 5f Ghorbani-Choghamarani A, Ghasemi B, Safari Z, Azadi G. Catal. Commun. 2015; 60: 70
- 5g Pourjavadi A, Nazari-Chamazkoti M, Hosseini SH. New J. Chem. 2015; 39: 1348
- 5h Kon Y, Yokoi T, Yoshioka M, Tanaka S, Uesaka Y, Mochizuki T, Sato K, Tatsumi T. Tetrahedron 2014; 70: 7584
- 5i Secci F, Arca M, Frongia A, Piras PP. New J. Chem. 2014; 38: 3622
- 5j Prakash GK. S, Shakhmin A, Glinton KE, Rao S, Mathew T, Olah GA. Green Chem. 2014; 16: 3616
- 5k Jeon HB, Kim KT, Kim SH. Tetrahedron Lett. 2014; 55: 3905
- 5l Gogoi P, Kalita M, Bhattacharjee T, Barman P. Tetrahedron Lett. 2014; 55: 1028
- 5m Bayat A, Shakourian-Fard M, Hashemi MM. Catal. Commun. 2014; 52: 16
- 5n Imada Y, Kitagawa T, Iwata S, Komiya N, Naota T. Tetrahedron 2014; 70: 495
- 5o Rostami A, Navasi Y, Moradi D, Ghorbani-Choghamarani A. Catal. Commun. 2014; 43: 16
- 5p Tanaka K, Kubo K, Iida K, Otani K, Murase T, Yanamoto D, Shiro M. Asian J. Org. Chem. 2013; 2: 1055
- 5q Rostami A, Hassanian F, Ghorbani-Choghamarani A, Saadati S. Phosphorus, Sulfur Silicon Relat. Elem. 2013; 188: 833
- 5r Menova P, Dvorakova H, Eigner V, Ludvik J, Cibulka R. Adv. Synth. Catal. 2013; 355: 3451
- 5s Wu X.-F. Tetrahedron Lett. 2012; 53: 4328
- 5t Hussain S, Talukdar D, Bharadwaj SK, Chaudhuri MK. Tetrahedron Lett. 2012; 53: 6512
- 5u Jafari H, Rostami A, Ahmad-Jangi F, Ghorbani-Choghamarani A. Synth. Commun. 2012; 42: 3150
- 6a Noguchi T, Hirai Y, Kirihara M. Chem. Commun. 2008; 3040
- 6b Kirihara M, Yamamoto J, Noguchi T, Hirai Y. Tetrahedron Lett. 2009; 50: 1180
- 6c Kirihara M, Yamamoto J, Noguchi T, Itou A, Naito S, Hirai Y. Tetrahedron 2009; 65: 10477
- 6d Kirihara M, Itou A, Noguchi T, Yamamoto J. Synlett 2010; 1557
- 6e Kirihara M. Yuki Gosei Kagaku Kyokaishi 2015; 73: 372
- 7 Varma RS, Naicker KP. Org. Lett. 1999; 189
- 8 Gómez MV, Caballero R, Vázquez E, Moreno A, de la Hoz A, Díaz-Ortiz Á. Green Chem. 2007; 9: 331
- 9 Siedlecka R, Skarżewski J. Synthesis 1994; 401
- 10 Asawa T, Tsuneizumi T, Iwasaki Y. Japanese Patent 4211130, 2008
- 11 NaOCl·5H2O is commercially available from Wako Pure Chemical Industries, Tokyo Chemical Industry Co., and Junsei Chemical Co. in Japan. It is also available from TCI Europe N. V and TCI America. Large quantities of NaOCl·5H2O can be obtained directly from the Nippon Light Metal Company.
- 12 Okada T, Asawa T, Sugiyama Y, Kirihara M, Iwai T, Kimura Y. Synlett 2014; 25: 596
- 13 Okada T, Matsumuro H, Iwai T, Kitagawa S, Yamazaki K, Akiyama T, Asawa T, Sugiyama Y, Kimura Y, Kirihara M. Chem. Lett. 2015; 44: 185
- 14 Representative Procedure for the Synthesis of Sulfoxides through the Reaction of Sulfides with NaOCl·5H2O: To a solution of thioanisole (1a; 248 mg, 2.0 mmol) in MeCN (10 mL) and H2O (2 mL), NaOCl·5H2O (362 mg, 2.2 mmol) was added and the mixture was stirred at r.t. for 18 min. H2O (20 mL) and CHCl3 (15 mL) were added, the organic layer was separated, and the aqueous phase was extracted with CHCl3 (3 × 15 mL). The extracts were dried over anhydrous magnesium sulfate, and evaporated. The residue was purified by silica gel column chromatography (n-hexane–EtOAc, 1:2 v/v) to provide methyl phenyl sulfoxide (2a; 275 mg, 98%) as colorless crystals. Methyl phenyl sulfone (3a; 6 mg, 2%) was also obtained as colorless crystals. Methyl Phenyl Sulfoxide (2a) 16 Mp 28–29 °C (Lit.17 26–29 °C). 1H NMR (CDCl3): δ = 7.67–7.65 (m, 2 H), 7.56–7.50 (m, 3 H), 2.73 (s, 3 H); 13C NMR (CDCl3): δ = 145.34, 130.87, 129.18, 123.28, 43.71. MS: m/z = 140 [M]+ Methyl Phenyl Sulfone (3a) 16 Mp 85–87 °C (Lit.17 85–87 °C). 1H NMR (CDCl3): δ = 7.95–7.93 (m, 2 H), 7.59–7.55 (m, 3 H), 3.06 (s, 3 H). 13C NMR (CDCl3): δ = 140.37, 133.48, 129.15, 127.03, 44.20. MS: m/z = 156 [M]+. p-Methoxyphenyl Methyl Sulfoxide (2b) 18 Yield: 339 mg (99%); colorless crystals; mp 32–33 °C (Lit.19 32–33 °C). 1H NMR (CDCl3): δ = 7.60 (d, J = 8.6 Hz, 2 H), 7.04 (d, J = 8.6 Hz, 2 H), 3.86 (s, 3 H), 2.70 (s, 3 H). 13C NMR (CDCl3): δ = 161.93, 136.58, 125.41, 114.81, 55.49, 43.97. MS: m/z = 170 [M]+. p-Methoxyphenyl Methyl Sulfone (3b) 20 Yield: 2 mg (1%); colorless crystals; mp 102–110 °C (Lit.21 110–113 °C). 1H NMR (CDCl3): δ = 7.88 (d, J = 9.0 Hz, 2 H), 7.03 (d, J = 9.0 Hz, 2 H), 3.89 (s, 3 H), 3.03 (s, 3 H). 13C NMR (CDCl3): δ = 163.68, 132.29, 129.54, 114.49, 55.70, 44.84. MS: m/z = 186 [M]+. p-Chlorophenyl Methyl Sulfoxide (2c) 18 Yield: 325 mg (93%); colorless crystals; mp: 45–46 °C (Lit.19 45–46 °C). 1H NMR (CDCl3): δ = 7.60 (d, J = 8.7 Hz, 2 H), 7.52 (d, J = 8.7 Hz, 2 H), 2.72 (s, 3 H). 13C NMR (CDCl3): δ = 144.22, 137.21, 129.62, 124.94, 44.02. MS: m/z = 176 [M+ for 37Cl], 174 [M+ for 35Cl] p-Chlorophenyl Methyl Sulfone (3c) 20 Yield: 19 mg (5%); colorless crystals; mp 87–92 °C (Lit.22 92–95 °C). 1H NMR (CDCl3): δ = 7.89 (d, J = 8.5 Hz, 2 H), 7.56 (d, J = 8.5 Hz, 2 H), 3.06 (s, 3 H). 13C NMR (CDCl3): δ = 140.49, 139.03, 129.72, 128.92, 44.56. MS: m/z = 192 [M+ for 37Cl], 190 [M+ for 35Cl]. p-Nitrophenyl Methyl Sulfoxide (2d) 18 Yield: 308 mg (83%); colorless crystals; mp 150–152 °C (Lit.23 152–153 °C). 1H NMR (CDCl3): δ = 8.40 (d, J = 9.0 Hz, 2 H), 7.84 (d, J = 9.0 Hz, 2 H), 2.80 (s, 3 H). 13C NMR (CDCl3): δ = 153.26, 149.52, 124.67, 124.51, 43.90. p-Nitrophenyl Methyl Sulfone (3d) 20 Yield: 30 mg (7%); colorless crystals; mp 123–130 °C (Lit.24 127–129.5 °C). 1H NMR (CDCl3): δ = 8.44 (d, J = 9.0 Hz, 2 H), 8.17 (d, J = 9.0 Hz, 2 H), 3.12 (s, 3 H). 13C NMR (CDCl3): δ = 150.87, 145.95, 128.98, 124.64, 44.28. Allyl Phenyl Sulfoxide (2e) 25 Yield: 286 mg (86%); colorless oil. 1H NMR (CDCl3): δ = 7.64–7.48 (m, 5 H), 5.71–5.60 (m, 1 H), 5.34 (d, J = 13.6 Hz, 1 H), 5.20 (d, J = 13.6 Hz, 1 H), 3.61–3.49 (m, 2 H). 13C NMR (CDCl3): δ = 142.62, 131.08, 129.03, 125.25, 124.34, 123.82, 60.87. MS: m/z = 166 [M]+. Allylphenyl Sulfone (3e) 26 Yield: 6 mg (2%); colorless oil. 1H NMR (CDCl3): δ = 7.89–7.86 (m, 2 H), 7.57–7.53 (m, 3 H), 5.83–5.74 (m, 1 H), 5.33 (d, J = 17.2 Hz, 1 H), 5.15 (d, J = 17.2 Hz, 1 H), 3.81 (d, J = 7.6 Hz, 2 H). 13C NMR (CDCl3): δ = 138.34, 133.71, 129.02, 128.47, 124.65, 124.63, 60.85. MS: m/z = 182 [M]+. Benzyl Phenyl Sulfoxide (2f) 27 Yield: 372 mg (86%); colorless crystals; mp 124 °C (Lit.27 123–124 °C). 1H NMR (CDCl3): δ = 7.46–7.36 (m, 5 H), 7.29–7.23 (m, 3 H), 6.99–6.97 (m, 2 H), 4.10 (d, J = 12.4 Hz, 1 H), 4.00 (d, J = 12.4 Hz, 1 H). 13C NMR (CDCl3): δ = 142.77, 131.13, 130.33, 129.12, 128.81, 128.42, 128.21, 124.41, 63.58. MS: m/z = 216 [M]+. Dibenzyl Sulfoxide (2g) 28 Yield: 412 mg (89%); colorless crystals; mp 136 °C (Lit.28 135–136 °C). 1H NMR (CDCl3): δ = 7.40–7.26 (m, 10 H), 3.91 (q, 4 H). 13C NMR (CDCl3): δ = 130.13, 130.11, 128.94, 128.35, 57.30. MS: m/z = 230 [M]+. Benzyl Methyl Sulfoxide (2h) 29 Yield: 234 mg (76%); colorless oil. 1H NMR (CDCl3): δ = 7.41–7.28 (m, 5 H), 4.07 (d, J = 13.0 Hz, 1 H), 3.93 (d, J = 13.0 Hz, 1 H), 2.46 (s, 3 H). 13C NMR (CDCl3): δ = 129.98, 129.66, 128.94, 128.40, 60.33, 37.27. MS: m/z = 154 [M]+. Decyl Methyl Sulfoxide (2i) 30 Yield: 410 mg (quant); colorless crystals; mp 48–50 °C (Lit.30 48–51 °C). 1H NMR (CDCl3): δ = 2.63–2.80 (m, 2 H), 2.58 (s, 3 H), 1.72–1.79 (m, 2 H), 1.40–1.50 (m, 2 H), 1.27–1.35 (m, 12 H), 0.87 (t, J = 6.8 Hz, 3 H). 13C NMR (CDCl3): δ = 55.03, 38.77, 32.15, 29.77, 29.64, 29.55, 29.49, 29.10, 23.96, 22.86, 14.40. MS: m/z = 188 [M+ – O]. Diphenyl Sulfoxide (2j) 16 Yield: 386 mg (95%); colorless crystals; mp 72 °C (Lit.17 69–71 °C). 1H NMR (CDCl3): δ = 7.67–7.61 (m, 4 H), 7.46–7.39 (m, 6 H). 13C NMR (CDCl3): δ = 145.49, 131.00, 129.26, 124.68. MS: m/z = 202 [M]+. Diphenyl Sulfone (3j) 16 Yield: 21 mg (5%); colorless crystals; mp 125 °C (Lit.26 123–124 °C). 1H NMR (CDCl3): δ = 7.94–7.90 (m, 4 H), 7.58–7.48 (m, 6 H). 13C NMR (CDCl3): δ = 141.57, 133.15, 129.24, 127.63. MS: m/z = 218 [M]+. 2-(Methylsulfinyl)pyridine (2k) 31Yield: 237 mg (84%); colorless oil. 1H NMR (CDCl3): δ = 8.64–8.61 (m, 1 H), 8.05–7.96 (m, 2 H), 7.41–7.39 (m, 1 H), 2.87 (s, 3 H). 13C NMR (CDCl3): δ = 165.75, 149.43, 138.05, 125.52, 119.14, 41.18. MS: m/z = 141 [M]+. 2-(Methylsulfonyl)pyridine (3k) 20 Yield: 21 mg (7%); colorless oil. 1H NMR (CDCl3): δ = 8.76–8.74 (m, 1 H), 8.12–7.93 (m, 2 H), 7.59–7.56 (m, 1 H), 3.25 (s, 3 H). 13C NMR (CDCl3): δ = 158.04, 150.08, 138.28, 127.45, 121.09, 40.01. MS: m/z = 157 [M]+. Dibenzothiophene Sulfoxide (2l) 32 Yield: 344 mg (86%); pale-yellow crystals; mp 207 °C (Lit.32 204–205 °C). 1H NMR (CDCl3): δ = 8.00 (d, J = 7.6 Hz, 2 H), 7.82 (d, J = 7.6 Hz, 2 H), 7.58–7.62 (m, 2 H). 13C NMR (CDCl3): δ = 145.08, 137.06, 132.53, 129.52, 127.50, 121.89. MS: m/z = 200 [M]+. Dibenzothiophene Sulfone 33 Yield: 28 mg (6%); pale-yellow crystals; mp 262 °C (Lit.33 246–250 °C). 1H NMR (CDCl3): δ = 7.83–7.81 (m, 2 H), 7.80–7.78 (m, 2 H), 7.65–7.61 (m, 2 H), 7.54–7.50 (m, 2 H). 13C NMR (CDCl3): δ = 137.68, 133.86, 131.58, 130.35, 122.14, 121.56. MS: m/z = 216 [M]+.
- 15 Gram-Scale Synthesis of 2a through Reaction of 1a with NaOCl·5H2O Caution: Oxidation using NaOCl·5H2O is exothermic, therefore a water bath (ca. 20 °C) must be used to control the reaction temperature for a gram-scale synthesis. Thioanisole (1a; 2.48 g, 20 mmol) was dissolved in MeCN (100 mL), and the reaction flask was submerged in a water bath. Aqueous 20.6% NaOCl (7.59 g, 21 mmol, prepared from NaOCl·5H2O and H2O)34 was added slowly over 5 min to the mixture, which was then stirred for 15 min. Sat. aq sodium sulfite (30 mL) and EtOAc (40 mL) were added to the reaction mixture, the organic layer was separated, and the aqueous phase was extracted with EtOAc (3 × 30 mL). The extracts were dried over anhydrous magnesium sulfate, and evaporated. The residue was purified by silica-gel column chromatography (n-hexane–EtOAc, 1:2 v:v) to provide methyl phenyl sulfoxide (2a; 2.68 g, 96%) as colorless crystals. Methyl phenyl sulfone (3a; 84 mg, 3%) was also obtained as colorless crystals.
- 16 Sato K, Hyodo M, Aoki M, Zheng X, Noyori R. Tetrahedron 2001; 57: 2469
- 17 ALDRICH Chemistry: Handbook of Fine Chemistry. Sigma–Aldrich; St. Louis: 2012
- 18 Kamata K, Hirano T, Mizuno N. Chem. Commun. 2009; 3958
- 19 Hanson P, Hendrickx RA A. J, Smith JR. L. Org. Biomol. Chem. 2008; 745
- 20 Fukuda N, Ikemoto T. J. Org. Chem. 2010; 75: 4629
- 21 Yang H, Li Y, Jiang M, Wang J, Fu H. Chem. Eur. J. 2011; 17: 5652
- 22 Kice JL, Kupczyk-Subotkowska L. J. Org. Chem. 1991; 56: 1424
- 23 Bordwell FG, Boutan PJ. J. Am. Chem. Soc. 1957; 79: 717
- 24 Caccia-Bava AM, Vitali T. Ann. Chim. 1950; 40: 21
- 25 Lindén AA, Krüger L, Bäckvall JE. J. Org. Chem. 2003; 68: 5890
- 26 Clifford G, Squies TG, Chen YY, Gregory PH, Juliana CS, Smith BF. J. Org. Chem. 1982; 47: 3773
- 27 Kageyama T, Okamura M. Synthesis 1983; 815
- 28 Caupene C, Boudou C, Perrio S, Metzner P. J. Org. Chem. 2005; 70: 2812
- 29 Rabai J, Kapovits I, Tanacs B, Tamas J. Synthesis 1990; 847
- 30 Capozzi MA. M, Cardellicchio C, Naso F, Tortorella P. J. Org. Chem. 2000; 65: 2843
- 31 Furukawa N, Takahashi F, Kawai T, Kishimoto K, Ogawa S, Oae S. Phosphorus Sulfur Relat. Elem. 1983; 16: 167
- 32 Nelsen FS, Luo Y, Weaver MN, Lockand JV. J. Org. Chem. 2006; 71: 1493
- 33 Klemm LH, Pou S, Detlefsen WD, Higgins C, Lawrence RF. J. Heterocycl. Chem. 1984; 21: 1293
- 34 Aqueous 20.6% NaOCl was prepared from NaOCl·5H2O (56.24 g) and H2O (61.89 g).
Reviews:
For representative methods of sulfoxide synthesis using stoichiometric amounts of oxidant, see: