Synlett 2015; 26(19): 2633-2643
DOI: 10.1055/s-0035-1560638
account
© Georg Thieme Verlag Stuttgart · New York

Natural Products Containing Hydrogen Sulfide Releasing Moieties

Michael D. Pluth*
Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, OR 97403, USA   Email: pluth@uoregon.edu
,
T. Spencer Bailey
Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, OR 97403, USA   Email: pluth@uoregon.edu
,
Matthew D. Hammers
Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, OR 97403, USA   Email: pluth@uoregon.edu
,
Matthew D. Hartle
Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, OR 97403, USA   Email: pluth@uoregon.edu
,
Hillary A. Henthorn
Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, OR 97403, USA   Email: pluth@uoregon.edu
,
Andrea K. Steiger
Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, OR 97403, USA   Email: pluth@uoregon.edu
› Author Affiliations
Further Information

Publication History

Received: 06 July 2015

Accepted after revision: 04 September 2015

Publication Date:
22 October 2015 (online)


Abstract

Hydrogen sulfide (H2S) is now recognized as an important biological molecule that plays diverse roles in various (patho)physiological conditions. Endogenous H2S, or its misregulation, has been associated with a variety of aspects of human health, including diabetes, hypertension, atherosclerosis, inflammation, neurodegeneration, sepsis, and asthma. Motivated by the potential use of H2S-donating molecules as both investigative and therapeutic tools, researchers are developing new types of slow-releasing H2S donor molecules that mimic the slow, continuous H2S release characteristic of enzymatic production. In addition to synthetic H2S donors, many natural products contain functional groups well known to release sulfide. Here we provide an overview of natural products that contain such functional groups, with an emphasis on organic polysulfides, to highlight the diversity of these structures and also to outline possible areas of future research on pharmacologically relevant H2S donors derived from natural products.

1 Introduction

2 Polysulfide-Containing Natural Products

2.1 Linear Polysulfides

2.2 Cyclic Polysulfides

2.3 Epidithiodioxopiperazines

2.4 Enediyne-Containing Trisulfides

3 Leinamycin

4 Other Disulfides and Thiols Implicated in Hydrogen Sulfide Generation

5 Conclusions and Prospects

 
  • References

    • 1a Wang R. Physiol. Rev. 2012; 92: 791
    • 1b Polhemus DJ, Lefer DJ. Circ. Res. 2014; 114: 730
    • 1c Wallace JL, Wang R. Nat. Rev. Drug Discovery 2015; 14: 329
  • 2 Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H. Nat. Commun. 2013; 4: 1366

    • For selected examples, see:
    • 3a Yang GD, Wu LY, Jiang B, Yang W, Qi JS, Cao K, Meng QH, Mustafa AK, Mu WT, Zhang SM, Snyder SH, Wang R. Science 2008; 322: 587
    • 3b Shen X, Pattillo CB, Pardue S, Bir SC, Wang R, Kevil CG. Free Radical Biol. Med. 2011; 50: 1021
    • 3c Liu C, Pan J, Li S, Zhao Y, Wu LY, Berkman CE, Whorton AR, Xian M. Angew. Chem. Int. Ed. 2011; 50: 10327
    • 3d Peng H, Cheng Y, Dai C, King AL, Predmore BL, Lefer DJ, Wang B. Angew. Chem. Int. Ed. 2011; 50: 9672
    • 3e Montoya LA, Pluth MD. Chem. Commun. 2012; 48: 4767
    • 3f Lippert AR, New EJ, Chang CJ. J. Am. Chem. Soc. 2011; 133: 10078
    • 3g Qian Y, Karpus J, Kabil O, Zhang S.-Y, Zhu H.-L, Banerjee R, Zhao J, He C. Nat. Commun. 2011; 2: 495
    • 3h Hammers MD, Taormina MJ, Cerda MM, Montoya LA, Seidenkranz DT, Parthasarathy R, Pluth MD. J. Am. Chem. Soc. 2015; 137: 10216
    • 3i Chen W, Liu C, Peng B, Zhao Y, Pacheco A, Xian M. Chem. Sci. 2013; 4: 2892
    • 3j Rossoni G, Sparatore A, Tazzari V, Manfredi B, Del Soldato P, Berti F. Br. J. Pharmacol. 2008; 153: 100
    • 3k Li L, Salto-Tellez M, Tan C.-H, Whiteman M, Moore PK. Free Radical Biol. Med. 2009; 47: 103
    • 3l Wallace JL, Vong L, McKnight W, Dicay M, Martin GR. Gastroenterology 2009; 137: 569
    • 3m Lee ZW, Zhou J, Chen C.-S, Zhao Y, Tan C.-H, Li L, Moore PK, Deng L.-W. PLoS One 2011; 6: e21077
    • 3n Zhao Y, Wang H, Xian M. J. Am. Chem. Soc. 2011; 133: 15
    • 3o Zhang D, Macinkovic I, Devarie-Baez NO, Pan J, Park C.-M, Carroll KS, Filipovic MR, Xian M. Angew. Chem. Int. Ed. 2014; 53: 575
    • 4a Toohey JI. Biochem. J. 1989; 264: 625
    • 4b Mustafa AK, Gadalla MM, Sen N, Kim S, Mu WT, Gazi SK, Barrow RK, Yang GD, Wang R, Snyder SH. Sci. Signal. 2009; 2: ra72
    • 4c Kimura H. Antioxid. Redox Signaling 2015; 22: 362
    • 4d Mishanina TV, Libiad M, Banerjee R. Nat. Chem. Biol. 2015; 11: 457
    • 5a Bailey TS, Zalcharov LN, Pluth MD. J. Am. Chem. Soc. 2014; 136: 10573
    • 5b Artaud I, Galardon E. ChemBioChem 2014; 15: 2361
    • 5c Galardon E, Padovani D. Bioconjugate Chem. 2015; 26: 1013
  • 6 Zhao WM, Zhang J, Lu YJ, Wang R. EMBO J. 2001; 20: 6008
  • 7 Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M, Motohashi H, Fujii S, Matsunaga T, Yamamoto M, Ono K, Devarie-Baez NO, Xian M, Fukuto JM, Akaike T. Proc. Natl. Acad. Sci. U.S.A. 2014; 111: 7606
    • 8a Kashfi K, Olson KR. Biochem. Pharmacol. 2013; 85: 689
    • 8b Olson KR. Am. J. Physiol. Regul., Integr. Comp. Physiol. 2011; 301: R297
    • 9a Song ZJ, Ng MY, Lee ZW, Dai W, Hagen T, Moore PK, Huang D, Deng LW, Tan CH. MedChemComm 2014; 5: 557
    • 9b Zhao Y, Biggs TD, Xian M. Chem. Commun. 2014; 50: 11788
    • 9c Papapetropoulos A, Whiteman M, Cirino G. Br. J. Pharmacol. 2015; 172: 1633
    • 10a Steudel R. Chem. Rev. 2002; 102: 3905
    • 10b Jacob C, Anwar A, Burkholz T. Planta Med. 2008; 74: 1580
    • 10c Li Q, Lancaster JR. Jr. Nitric Oxide Biol. Chem. 2013; 35: 21
    • 10d Münchberg U, Anwar A, Mecklenburg S, Jacob C. Org. Biomol. Chem. 2007; 5: 1505
    • 10e Jacob C. Nat. Prod. Rep. 2006; 23: 851
  • 11 Rahman MS. Int. J. Food Prop. 2007; 10: 245
  • 12 Rana SV, Pal R, Vaiphei K, Sharma SK, Ola RP. Nutr. Res. Rev. 2011; 24: 60
  • 13 Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 17977
    • 14a Pickering TL, Saunders KJ, Tobolsky AV. J. Am. Chem. Soc. 1967; 89: 2364
    • 14b Kamyshny A, Goifman A, Gun J, Rizkov D, Lev O. Environ. Sci. Technol. 2004; 38: 6633
    • 14c Munday R, Munday JS, Munday CM. Free Radical Biol. Med. 2003; 34: 1200
  • 15 Boelens M, De Valois PJ, Wobben HJ, Van der Gen A. J. Agric. Food Chem. 1971; 19: 984
    • 16a Griffiths G, Trueman L, Crowther T, Thomas B, Smith B. Phytother. Res. 2002; 16: 603
    • 16b Banerjee SK, Mukherjee PK, Maulik SK. Phytother. Res. 2003; 17: 97
  • 17 Knudsen JT, Tollsten L. Bot. J. Linn. Soc. 1995; 119: 45
  • 18 Rajanikanth B, Ravindranath B, Shankaranarayana ML. Phytochemistry 1984; 23: 899
  • 19 Statheropoulos M, Agapiou A, Spiliopouiou C, Pallis GC, Sianos E. Sci. Total Environ. 2007; 385: 221
  • 20 Stensmyr MC, Urru I, Collu I, Celander M, Hansson BS, Angioy AM. Nature 2002; 420: 625
    • 21a De Sousa JR, Demuner AJ, Pinheiro JA, Breitmaier E, Cassels BK. Phytochemistry 1990; 29: 3653
    • 21b Benevides PJ. C, Young MC. M, Giesbrecht AM, Roque Nd F, Bolzani Vd S. Phytochemistry 2001; 57: 743
    • 22a Kouokam JC, Jahns T, Becker H. Planta Med. 2002; 68: 1082
    • 22b Kohama Y, Iida K, Semba T, Mimura T, Inada A, Tanaka K, Nakanishi T. Chem. Pharm. Bull. 1992; 40: 2210
  • 23 Park Y, Liu Y, Hong J, Lee CO, Cho H, Kim DK, Im KS, Jung JH. J. Nat. Prod. 2003; 66: 1495
  • 24 Faizi S, Siddiqui BS, Saleem R, Noor F, Husnain S. J. Nat. Prod. 1997; 60: 1317
    • 25a Morita K, Kobayashi S. Chem. Pharm. Bull. 1967; 15: 988
    • 25b Morita K, Kobayashi S. Tetrahedron Lett. 1966; 573
    • 25c Chen CC, Ho CT. J. Agric. Food Chem. 1986; 34: 830
  • 26 Lelik L, Vitanyi G, Lefler J, Hegoczky J, Nagy-Gasztonyi M, Vereczkey G. Acta Aliment. 1997; 26: 271
  • 27 Miyazawa M, Osman F. Nat. Prod. Lett. 2001; 15: 171
  • 28 Hausen BM, Wolf C. Am. J. Contact Dermat. 1996; 7: 41
  • 29 Anthoni U, Christophersen C, Madsen JO, Wiumandersen S, Jacobsen N. Phytochemistry 1980; 19: 1228
    • 30a Pearce AN, Babcock RC, Battershill CN, Lambert G, Copp BR. J. Org. Chem. 2001; 66: 8257
    • 30b Copp BR, Blunt JW, Munro MH. G, Pannell LK. Tetrahedron Lett. 1989; 30: 3703
  • 31 Ichimaru M, Kato A, Hashimoto Y. J. Nat. Prod. 2000; 63: 1675
    • 32a Davidson BS, Molinski TF, Barrows LR, Ireland CM. J. Am. Chem. Soc. 1991; 113: 4709
    • 32b Makarieva TN, Stonik VA, Dmitrenok AS, Grebnev BB, Isakov VV, Rebachyk NM, Rashkes YW. J. Nat. Prod. 1995; 58: 254
  • 33 Liu HW, Fujiwara T, Nishikawa T, Mishima Y, Nagai H, Shida T, Tachibana K, Kobayashi H, Mangindaan RE. P, Namikoshi M. Tetrahedron 2005; 61: 8611
    • 34a Aebisher D, Brzostowska EM, Sawwan N, Ovalle R, Greer A. J. Nat. Prod. 2007; 70: 1492
    • 34b Litaudon M, Guyot M. Tetrahedron Lett. 1991; 32: 911
  • 35 Welch TR, Williams RM. Nat. Prod. Rep. 2014; 31: 1376
  • 36 Weindling R, Emerson OH. Phytopathology 1936; 26: 1068
  • 37 Waring P, Eichner RD, Tiwaripalni U, Mullbacher A. Aust. J. Chem. 1987; 40: 991
  • 38 Stillwel MA, Magasi LP, Strunz GM. Can. J. Microbiol. 1974; 20: 759
  • 39 Strunz GM, Kakushima M, Stillwell MA. Can. J. Chem. 1975; 53: 295
  • 40 Curtis PJ, Greatbanks D, Hesp B, Cameron AF, Freer AA. J. Chem. Soc., Perkin Trans. 1 1977; 180
    • 41a Beecham AF, Fridrichsons J, Mathieson AM. Tetrahedron Lett. 1966; 7: 3131
    • 41b Synge RL. M, White EP. Chem. Ind. 1959; 1546
  • 42 Safe S, Taylor A. J. Chem. Soc. C 1971; 1189
  • 43 Rahman R, Safe S, Taylor A. J. Chem. Soc. C 1969; 1665
  • 44 Kawahara N, Nozawa K, Nakajima S, Kawai K, Yamazaki M. J. Chem. Soc., Chem. Commun. 1989; 951
  • 45 Kawahara N, Nozawa K, Yamazaki M, Nakajima S, Kawai K.-I. Chem. Pharm. Bull. 1990; 38: 73
  • 46 Kawahara N, Nozawa K, Nakajima S, Kawai K.-I. J. Chem. Soc., Chem. Commun. 1986; 1495
    • 47a Takahashi C, Minoura K, Yamada T, Numata A, Kushida K, Shingu T, Hagishita S, Nakai H, Sato T, Harada H. Tetrahedron 1995; 51: 3483
    • 47b Takahashi C, Numata A, Ito Y, Matsumura E, Araki H, Iwaki H, Kushida K. J. Chem. Soc., Perkin Trans. 1 1994; 1859
  • 48 Dong JY, He HP, Shen YM, Zhang KQ. J. Nat. Prod. 2005; 68: 1510
    • 49a Carr G, Tay W, Bottriell H, Andersen SK, Mauk AG, Andersen RJ. Org. Lett. 2009; 11: 2996
    • 49b Jabri SY, Overman LE. J. Org. Chem. 2013; 78: 8766
    • 50a Liang ZX. Nat. Prod. Rep. 2010; 27: 499
    • 50b Nicolaou KC, Dai WM. Angew. Chem. Int. Ed. Engl. 1991; 30: 1387
    • 50c Smith AL, Nicolaou KC. J. Med. Chem. 1996; 39: 2103
  • 51 Lam KS, Veitch JA, Golik J, Krishnan B, Klohr SE, Volk KJ, Forenza S, Doyle TW. J. Am. Chem. Soc. 1993; 115: 12340
  • 52 Hara M, Asano K, Kawamoto I, Takiguchi T, Katsumata S, Takahashi KI, Nakano H. J. Antibiot. 1989; 42: 1768
    • 53a Mitra K, Kim W, Daniels JS, Gates KS. J. Am. Chem. Soc. 1997; 119: 11691
    • 53b Gates KS. Chem. Res. Toxicol. 2000; 13: 953
  • 54 Boelens H, Brandsma L. Recl. Trav. Chim. Pays-Bas 1972; 91: 141
  • 55 Liang D, Wu H, Wong MW, Huang D. Org. Lett. 2015; 17: 4196
  • 56 Chu LR, Dong Z, Xu XP, Cochran DL, Ebersole JL. Infect. Immun. 2002; 70: 1113
    • 57a Turner E, Klevit R, Hager LJ, Shapiro BM. Biochemistry 1987; 26: 4028
    • 57b Turner E, Hager LJ, Shapiro BM. Science 1988; 242: 939
    • 58a Cheah IK, Halliwell B. Biochim. Biophys. Acta, Mol. Basis Dis. 2012; 1822: 784
    • 58b Hartman PE. Methods Enzymol. 1990; 186: 310
  • 59 Booth JS, Appleman MD. J. Bacteriol. 1963; 85: 654