Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2016; 48(03): 357-364
DOI: 10.1055/s-0035-1560974
DOI: 10.1055/s-0035-1560974
paper
Facile Synthesis of Multifunctional Pyrrolo[2,1-a]isoquinolin-3(2H)-ones via Sulfa-Michael-Triggered One-Pot Reactions
Further Information
Publication History
Received: 17 September 2015
Accepted after revision: 30 October 2015
Publication Date:
25 November 2015 (online)
Abstract
An operationally simple and efficient one-pot method is developed for the synthesis of pyrrolo[2,1-a]isoquinolin-3(2H)-ones bearing sulfur moieties. The reaction involves a sulfa-Michael-triggered tandem reaction followed by acid-mediated lactamization, and exhibits good functional group tolerance.
Key words
one-pot reaction - sulfa-Michael addition - lactamization - pyrroloisoquinolone - sulfur-containingSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560974.
- Supporting Information
-
References
- 1a Imanol T, Esther D. Synlett 2012; 23: 2165
- 1b Foster RA. A, Willis MC. Chem. Soc. Rev. 2013; 42: 63
- 1c He L.-M, Nie H.-M, Qiu G, Gao Y.-Q, Wu J. Org. Biomol. Chem. 2014; 12: 9045
- 1d Burtoloso AC. B, Dias RM. P, Bernardim B. Acc. Chem. Res. 2015; 48: 921
- 2a Mikhailovskii AG, Shklyaev VS. Chem. Heterocycl. Compd. 1997; 33: 243
- 2b See also: Pässler U, Knöller HJ. In The Alkaloids: Chemistry and Biology . Vol. 70. Knöller HJ. Elsevier; Amsterdam: 2011: 79
- 2c Zhang Q, Tu G, Zhao Y, Cheng T. Tetrahedron 2002; 58: 6795
- 2d Xiang L, Xing D, Wang W, Wang R, Ding Y, Du L. Phytochemistry 2005; 66: 2595
- 2e Wang RF, Yang XW, Ma CM, Cai SQ, Li JN, Shoyama Y. Heterocycles 2004; 63: 1443
- 2f Ozawa M, Kawamata S, Etoh T, Hayashi M, Komiyama K, Kishida A, Kuroda C, Ohsaki A. Chem. Pharm. Bull. 2010; 58: 1119
- 2g Baunbæk D, Trinkler N, Ferandin Y, Lozach O, Ploypradith P, Rucirawat S, Ishibashi F, Iwao M, Meijer L. Mar. Drugs 2008; 6: 514
- 2h Shen L, Yan X, Yang B, He Q, Hu Y. Eur. J. Med. Chem. 2010; 45: 11
- 3a Moreau A, Couture A, Deniau E, Grandclaudon P, Lebrun S. Tetrahedron 2004; 60: 6169
- 3b Wang RF, Yang XW, Ma CM, Cai SQ, Li JN, Shoyama Y. Heterocycles 2004; 63: 1443
- 4a Hitchings GJ, Helliwell M, Vernon JM. J. Chem. Soc., Perkin Trans. 1 1990; 83
- 4b Allin SM, James SL, Martin WP, Smith TA. D, Elsegood MR. J. J. Chem. Soc., Perkin Trans. 1 2001; 3029
- 4c Allin SM, James SL, Martin WP, Smith TA. D. Tetrahedron Lett. 2001; 42: 3943
- 4d Kałuża Z, Mostowicz D, Dołęga G, Mroczko K, Wójcik R. Tetrahedron 2006; 62: 943
- 4e Fleury J.-F, Netchitaïlo P, Daïch A. Synlett 2011; 1821
- 4f Selvakumar J, Makriyannis A, Ramanathan CR. Org. Biomol. Chem. 2010; 8: 4056
- 4g González-Temprano I, Osante I, Lete E, Sotomayor N. J. Org. Chem. 2004; 69: 3875
- 4h Moreno L, Párraga J, Galán A, Cabedo N, Primo J, Cortes D. Bioorg. Med. Chem. 2012; 20: 6589
- 4i Bousquet T, Fleury J.-F, Daïch A, Netchitaïlo P. Tetrahedron 2006; 62: 706
- 5a Gibson HW. J. Heterocycl. Chem. 1989; 361
- 5b Hahn J.-T, Kant J, Popp FD, Chhabra SR, Uff BC. J. Heterocycl. Chem. 1992; 1165
- 5c Li W.-D, Yang ZH. Tetrahedron 2005; 61: 5037
- 6 Clarke PA, Santos S, Martin WH. C. Green Chem. 2007; 9: 438
- 7a Mamane V, Fort Y. Tetrahedron Lett. 2006; 47: 2337
- 7b Cao J, Huang X. Org. Lett. 2010; 12: 5048
- 7c Tang Y, Han R.-R, Lv M, Chen Y, Yang P. Tetrahedron 2015; 71: 4334
- 8a Hansch C, Sammes PG, Taylor JB. Comprehensive Medicinal Chemistry, The Rational Design, Mechanistic Study & Therapeutic Application of Chemical Compounds. Pergamon Press; Oxford: 1990. Chap. 7.1, 2
- 8b Shen C, Zhang P.-F, Sun Q, Bai S.-Q, Hor TS. A, Liu X.-G. Chem. Soc. Rev. 2015; 44: 291
- 8c Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807
- 9a Qin T.-Y, Cheng L, Zhang SX.-A, Liao W.-W. Chem. Commun. 2015; 51: 9714
- 9b Pan F, Chen J.-M, Zhuang Z, Fang Y.-Z, Zhang SX.-A, Liao W.-W. Org. Biomol. Chem. 2012; 10: 2214
- 9c Pan F, Chen J.-M, Qin T.-Y, Zhang SX.-A, Liao W.-W. Eur. J. Org. Chem. 2012; 5324
- 9d Yan Y, En D, Zhuang Z, Guo Y, Liao W.-W. Tetrahedron Lett. 2014; 55: 479
- 9e En D, Zou G.-F, Guo Y, Liao W.-W. J. Org. Chem. 2014; 79: 4456
- 9f Chen J.-M, Xu Q.-Q, Liao W.-W. Chem. Eur. J. 2014; 20: 13876
- 10 The preparation of pure substrate 1 with an alkyl group at position R2 (for example, R2 = PhCH2CH2) was difficult because the allylic alkylation gave a complex mixture. However, we think that the tautomerization of compound 2 would favor a substrate with an aryl group over an alkyl group, presumably due to the fact that an aromatic system can provide a more stable conjugated intermediate.
- 11a Cozzi PG, Emer E, Gualandi A. Angew. Chem. Int. Ed. 2011; 50: 3847
- 11b Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
- 12 CCDC 1421327 (compound 3k); see the Supporting Information for details.
- 13 Gawinecki R, Kolehmainen E, Loghmani-Khouzani H, Miałowski BO, Lovász T, Rosa P. Eur. J. Org. Chem. 2006; 2817
For selected recent reviews, see:
For a general review on pyrrolo[2,1-a]isoquinolines, see:
For selected examples, see:
For selected recent examples, see:
Presumably due to the introduction of a Br atom at the ortho position of the aromatic ring (R2), atropisomeric product 3i was obtained with 2.5:1 diastereoselectivity. The structures of the isomers of 3i were confirmed by 1H NMR and 13C NMR spectroscopy and by HRMS (see the experimental section). In the case of 3m, a single product was obtained and the phenomenon of restricted rotation was not observed. For atroposelective synthesis, please see: