Synlett, Inhaltsverzeichnis Synlett 2016; 27(06): 956-960DOI: 10.1055/s-0035-1561290 letter © Georg Thieme Verlag Stuttgart · New York An Efficient Biomimetic Aerobic Oxidation of Alcohols Catalyzed by Iron Combined with Amino Acids Guofu Zhang a College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China eMail: dingcr@zjut.edu.cn , Shasha Li a College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China eMail: dingcr@zjut.edu.cn , Jie Lei a College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China eMail: dingcr@zjut.edu.cn , Guihua Zhang a College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China eMail: dingcr@zjut.edu.cn , Xiaoqiang Xie a College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China eMail: dingcr@zjut.edu.cn , Chengrong Ding* a College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China eMail: dingcr@zjut.edu.cn , Renhua Liu* b School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China eMail: liurh@ecust.edu.cn › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract A novel combination of FeCl3, l-valine and TEMPO is found to oxidize alcohols to the carbonyl compounds with dioxygen. A wide range of primary/secondary benzyl, allylic, and heterocyclic alcohols have been efficiently converted into aldehydes and ketones with good to excellent isolated yields. Key words Key wordsalcohols - aldehydes - amino acids - iron - ketones - oxidation Volltext Referenzen References and Notes 1a Bäckvall E. Modern Oxidation Methods . Wiley-VCH; Weinheim: 2004 1b Tojo G, Fernandez M. Oxidations of Alcohols to Aldehydes and Ketones . Springer; New York: 2006 1c Parmeggiani C, Cardona F. Green Chem. 2012; 14: 547 2 Boisvert L, Goldberg KI. Acc. Chem. Res. 2012; 45: 899 3a ten Brink GJ, Arends IW. C. E, Sheldon RA. Science 2000; 287: 1636 3b Piera J, Persson A, Caldentey X, Bäckvall J.-E. J. Am. Chem. Soc. 2007; 129: 14120 3c Zhang G.-F, Wang Y, Wen X, Ding C.-R, Li Y. Chem. Commun. 2012; 48: 2979 4a Dijksman A, Marino-González A, Payeras AM, Arends IW. C. E, Sheldon RA. J. Am. Chem. Soc. 2001; 123: 6826 4b Csjernyik G, Éll L, Fadini AH, Pugin B, Bäckvall J.-E. J. Org. Chem. 2002; 67: 1657 4c Mori S, Takubo M, Makida K, Yanase T, Aoyagi S, Maegawa T, Monguchi Y, Sajiki H. Chem. Commun. 2009; 5159 5a Döbler C, Mehltretter GM, Sundermeier U, Eckert M, Militzer H.-C, Beller M. Tetrahedron Lett. 2001; 42: 8447 5b Muldoon J, Brown SN. Org. Lett. 2002; 4: 104 6a Guan B.-T, Xing D, Cai GX, Wan X.-B, Yu N, Fang Z, Yang L.-P, Shi Z.-J. J. Am. Chem. Soc. 2005; 127: 18004 6b Miyamura H, Matsubara R, Miyazaki Y, Kobayashi S. Angew. Chem. Int. Ed. 2007; 46: 4151 6c Karimi B, Esfahani FK. Adv. Synth. Catal. 2012; 354: 1319 7a Fujita K, Yoshida T, Imori Y, Yamaguchi R. Org. Lett. 2011; 13: 2278 7b Kawahara R, Fujita K, Yamaguchi R. J. Am. Chem. Soc. 2012; 134: 3643 8a Semmelhack MF, Schmid CR, Cortés DA, Chou CS. J. Am. Chem. Soc. 1984; 106: 3374 8b Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062 8c Hoover JM, Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901 8d Allen SE, Walvoord RR, Salinas RP, Kozlowski MC. Chem. Rev. 2013; 113: 6234 8e Zhang G.-F, Han X.-W, Luan Y.-X, Wang Y, Wen X, Ding C.-R. Chem. Commun. 2013; 49: 7908 8f Zhang G.-F, Han X.-W, Luan Y.-X, Wang Y, Wen X, Xu L, Ding C.-R, Gao J.-R. RSC Adv. 2013; 3: 19255 8g Zhang G.-F, Lei J, Han X.-W, Luan Y.-X, Ding C.-R, Shan S. Synlett 2015; 26: 779 8h McCann SD, Stahl SS. Acc. Chem. Res. 2015; 48: 1756 For some reviews, see: 9a Schultz MJ, Sigman MS. Tetrahedron 2006; 62: 8227 9b Gligorich KM, Sigman MS. Chem. Commun. 2009; 3854 9c Han S.-B, Kim IS, Krische MJ. Chem. Commun. 2009; 7278 9d Parmeggiani C, Cardona F. Green Chem. 2012; 14: 547 9e Sheldon RA. Catal. Today 2015; 247: 4 10a Que LJr, Tolman WB. Nature (London, U.K.) 2008; 455: 333 10b Xu B, Lumb J.-P, Arndtsen BA. Angew. Chem. Int. Ed. 2015; 54: 4208 11a Plietker B. Iron Catalysis in Organic Chemistry . Wiley-VCH; Weinheim: 2008 11b Chen K, Que LJr. J. Am. Chem. Soc. 2001; 123: 6327 11c Shan X, Que LJr. J. Inorg. Biochem. 2006; 100: 421 11d Piera J, Bäckvall J.-E. Angew. Chem. Int. Ed. 2008; 47: 3506 11e Bolm C. Nat. Chem. 2009; 1: 420 12a Cotton FA, Wilkinson G, Manfred B, Carlos M. Advanced Inorganic Chemistry . Wiley; New York: 1998 12b Crichto R. Inorganic Biochemistry of Iron Metabolism. Wiley; Chichester: 2001 12c Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217 12d Correa A, Mancheno OG, Bolm C. Chem. Soc. Rev. 2008; 37: 1108 12e Sherry BD, Fürstner A. Acc. Chem. Res. 2008; 41: 1500 12f Leskelae M, Repo T. Chem. Commun. 2010; 46: 9250 13 Costas M, Chen K, Que LJr. Coord. Chem. Rev. 2000; 200–202: 517 14a Ortiz de Montellano PR. Cytochrome P-450 Structure, Mechanism and Biochemistry . 2nd ed. Plenum Press; New York: 1995 14b Stubbe J, Kozarich JW. Chem. Rev. 1987; 87: 1107 14c Meunier B. Chem. Rev. 1992; 92: 1411 14d Li HY, Poulos TL. Structure 1994; 2: 461 14e Sono M, Roach MP, Coulter ED, Dawson JH. Chem. Rev. 1996; 96: 2841 15 Wallar BJ, Lipscomb JD. Chem. Rev. 1996; 96: 2625 16a Woodland MP, Dalton H. J. Biol. Chem. 1984; 259: 53 16b Green J, Dalton H. J. Biol. Chem. 1989; 264: 17698 16c Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P. Nature (London, U.K.) 1993; 366: 537 17a Tshuva EY, Lippard SJ. Chem. Rev. 2004; 104: 987 17b Monir K, Bagdi AK, Ghosh M, Hajra A. Org. Lett. 2014; 16: 4630 18a Cabral J, Laszlo P, Mahe L. Tetrahedron Lett. 1989; 30: 3969 18b Christoffers J, Baro A. Angew. Chem. Int. Ed. 2003; 42: 1688 18c White JD, Shawa S. Chem. Sci. 2014; 5: 2200 19a Oldenburg PD, Feng Y, Pryjonska-Ray I, Ness D, Que LJr. J. Am. Chem. Soc. 2010; 132: 17713 19b Chen M, White MC. Science 2010; 327: 566 19c Bigi MA, Reed SA, White MC. Nat. Chem. 2011; 3: 216 20a Maiti S, Biswas S, Jana U. J. Org. Chem. 2010; 75: 1674 20b Hatakeyama T, Imayoshi R, Yoshimoto Y, Ghorai SK, Jin M, Takaya H, Norisuye K, Sohrin Y, Nakamura M. J. Am. Chem. Soc. 2012; 134: 20262 20c Modak A, Rana S, Maiti D. J. Org. Chem. 2015; 80: 296 21a Lautens M, Klute W, Tam W. Chem. Rev. 1996; 96: 49 21b Heuss BD, Mayer MF, Dennis S, Hossain MM. Inorg. Chim. Acta 2003; 342: 301 21c Maiti S, Biswas S, Jana U. J. Org. Chem. 2010; 75: 1674 22a Whetten RL, Fu K.-J, Grant ER. J. Am. Chem. Soc. 1982; 104: 4270 22b Long GT, Weitz E. J. Am. Chem. Soc. 2000; 122: 1431 22c Mayer M, Welther A, von Wangelin AJ. ChemCatChem 2011; 3: 1567 23a Al-Hunaiti A, Niemi T, Sibaouih A, Pihko P, Leskelae M, Repo T. Chem. Commun. 2010; 46: 9250 23b Join B, Möller K, Ziebart C, Schröder K, Gördes D, Thurow K, Spannenberg A, Junge K, Beller M. Adv. Synth. Catal. 2011; 353: 3023 23c Wang L, Li J, Lv Y, Zhao G, Gao S. Appl. Organomet. Chem. 2012; 26: 37 23d Chakraborty S, Lagaditis PO, Forster M, Bielinski EA, Hazari N, Holthausen MC, Jones WD, Schneider S. ACS Catal. 2014; 4: 3994 23e Song H, Kang B, Hong SH. ACS Catal. 2014; 4: 2889 24a Martin SE, Suárez DF. Tetrahedron Lett. 2002; 43: 4475 24b Wang N.-W, Liu R.-H, Chen J.-P, Liang X.-M. Chem. Commun. 2005; 5322 24c Wang X.-L, Liang X.-M. Chin. J. Catal. 2008; 29: 935 24d Yin W.-L, Chu C.-H, Lu Q.-Q, Tao J.-W, Liang X.-M, Liu R.-H. Adv. Synth. Catal. 2010; 352: 113 24e Ma S.-M, Liu J.-X, Li S.-H, Chen B, Cheng J.-J, Kuang J.-Q, Liu Y, Wan B.-Q, Wang Y.-L, Ye J.-T, Yu Q, Yuan W.-M, Yu S.-C. Adv. Synth. Catal. 2011; 353: 1005 24f Miao C.-X, Wang J.-Q, Yu B, Cheng W.-G, Sun J, Chanfreau S, He L.-N, Zhang S.-J. Chem. Commun. 2011; 47: 2697 24g Liu J.-X, Ma S.-M. Org. Biomol. Chem. 2013; 11: 4186 24h Liu J.-X, Ma S.-M. Tetrahedron 2013; 69: 10161 24i Liu J.-X, Ma S.-M. Org. Lett. 2013; 15: 5150 25 Typical Procedure for Primary Alcohol Oxidation (p-Methylbenzyl Alcohol) A mixture of p-methylbenzyl alcohol (0.1222 g, 1.0 mmol), l-valine (0.0117 g, 0.1 mmol), FeCl3 (0.0081 g, 0.05 mmol), TEMPO (0.0156 g, 0.1 mmol), toluene (4.0 mL), 4 Å MS (0.7000 g) were added to a 150 mL Schlenk tube. Then the resulting mixture was vigorously stirred under oxygen at reflux temperature for 12 h. After the reaction, the residue was filtered off, and the solvent was removed under vacuum to give the crude product, which was purified by column chromatography on silica gel to give the pure product 1 (0.1093 g isolated yield 91%). 1H NMR (500 MHz, CDCl3): δ = 2.38 (s, 3 H), 7.27 (d, J = 4.3 Hz, 2 H), 7.73 (d, J = 4.0 Hz, 2 H), 9.91 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 21.5, 129.4, 129.5, 134.0, 145.2, 191.6. 26 Typical Procedure for Secondary Alcohol Oxidation (1-Phenethyl Alcohol) A mixture of 1-phenethyl alcohol (0.1222 g, 1.0 mmol), l-valine (0.0117 g, 0.1 mmol), FeCl3 (0.0162 g, 0.1 mmol), TEMPO (0.0156 g, 0.1 mmol), toluene (4.0 mL), 4 Å MS (0.7000 g) were added to a 150 mL Schlenk tube. Then the resulting mixture was vigorously stirred under oxygen at reflux temperature for 24 h. After the reaction, the residue was filtered off, and the solvent was removed under vacuum to give the crude product, which was purified by column chromatography on silica gel to give the pure product 26 (0.1093 g isolated yield 91%). 1H NMR (500 MHz, CDCl3): δ = 2.52 (s, 3 H), 7.40 (t, J = 7.5 Hz, 2 H), 7.51 (t, J = 7.0 Hz, 1 H), 7.91 (d, J = 4.3 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 26.5, 128.2, 128.5, 133.0, 137.1, 198.1. Zusatzmaterial Zusatzmaterial Supporting Information