Synlett 2016; 27(10): 1456-1485
DOI: 10.1055/s-0035-1561369
account
© Georg Thieme Verlag Stuttgart · New York

Diaryliodonium Salts in Organic Syntheses: A Useful Compound Class for Novel Arylation Strategies

Klára Aradi
,
Balázs L. Tóth
,
Gergely L. Tolnai
,
Zoltán Novák*
Further Information

Publication History

Received: 08 December 2015

Accepted after revision: 12 January 2016

Publication Date:
02 March 2016 (online)


Abstract

This account aims to give a description of the usefulness of diaryliodonium salts in organic chemistry, including their synthesis and applications in the presence and absence of transition-metal catalysts. Herein, we briefly summarize the structural properties and reactivity of diaryliodonium salts. We describe several applications of these hypervalent reagents including metal-free arylations of C-, O-, N- and S-nu­cleophiles. The synthesis and functionalization of aromatic and heteroaromatic systems via copper- and palladium-catalyzed transformations are also discussed in this account.

1 Introduction

2 Structural Properties and Reactivity

3 Applications of Diaryliodonium Salts in Organic Syntheses

3.1 Transition-Metal-Free Arylations of Heteroatom and Carbon Nucleophiles

3.1.1 Arylation of Oxygen Nucleophiles

3.1.1.1 Arylation of (Hetero)aromatic Alcohols

3.1.1.2 Arylation of Aliphatic Alcohols

3.1.1.3 Arylation of Acids

3.1.2 Arylation of Nitrogen Nucleophiles

3.1.2.1 N-Arylation of Amines and Amides

3.1.2.2 N-Arylation of Heterocycles

3.1.3 Arylation of Sulfur Nucleophiles

3.1.4 Arylation of Inorganic Anions

3.1.5 Arylation of Carbon Nucleophiles

3.1.5.1 Electron-Rich Heterocycles

3.1.5.2 Arylation of Carbonyl and Nitro Compounds

3.2 Synthesis and Functionalization of Aromatic and Heteroaromatic Molecules with Diaryliodonium Salts in the Presence of Copper and Palladium Catalysts

3.2.1 C–H Functionalizations by Copper-Catalyzed C–H Arylations

3.2.2 Copper-Catalyzed Cyclization of Unsaturated Compounds with Diaryliodonium Salts

3.2.3 Palladium-Catalyzed Arylations

3.2.3.1 Electrophilic Palladation and Arylation

3.2.3.2 Directing-Group-Assisted C–H Bond Activation and Arylation

4 Conclusion

 
  • References and Notes

  • 1 Present address: Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
    • 2a Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds. Wiley; Chichester: 2013
    • 2b Wirth T. Hypervalent Iodine Chemistry . Springer; Berlin: 2003
    • 2c Varvoglis A. Hypervalent Iodine in Organic Syntheses . Academic Press; San Diego: 1996
    • 2d Zhdankin VV. ARKIVOC 2009; (i): 1
    • 3a Wirth T. Angew. Chem. Int. Ed. 2005; 117: 3722
    • 3b Richardson RD, Wirth T. Angew. Chem. Int. Ed. 2006; 45: 4402
    • 4a Meyer SD, Schreiber SL. J. Org. Chem. 1994; 59: 7549
    • 4b Zhdankin VV. Chem. Rev. 2008; 108: 5299
    • 4c Nicolaou KC, Baran PS, Zhong Y.-L, Barluenga S, Hunt KW, Kranich R, Vega JA. J. Am. Chem. Soc. 2002; 124: 2233
    • 4d Nicolaou KC, Mathison CJ. N, Montagnon T. J. Am. Chem. Soc. 2004; 126: 5192
    • 4e Ladziata U, Zhdankin VV. ARKIVOC 2006; (ix): 26
    • 6a Koser GF, Wettach RH, Smith CS. J. Org. Chem. 1980; 45: 1543
    • 6b Stang PJ, Zhdankin VV, Tykwinski R. Tetrahedron Lett. 1992; 33: 1419
    • 6c Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
    • 6d Bielawski M, Olofsson B. Chem. Commun. 2007; 25: 2521
    • 6e Yusubov MS, Maskaev AV, Zhdankin VV. ARKIVOC 2011; (i): 370
    • 6f Olofsson B.; Top. Curr. Chem.; DOI: 10.1007/128_2015_661.
  • 7 Hartmann C, Meyer V. Ber. Dtsch. Chem. Ges. 1894; 27: 426
  • 8 Powell W. Pure Appl. Chem. 1984; 56: 769
  • 9 Ochiai M. Top. Curr. Chem. 2003; 224: 5
  • 10 Okuyama T, Takino T, Sueda T, Ochiai M. J. Am. Chem. Soc. 1995; 117: 3360
  • 11 Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
  • 12 Beringer FM, Brierley A, Drexler M, Gindler EM, Lumpkin CC. J. Am. Chem. Soc. 1953; 75: 2708
  • 13 Crowder JR, Glover EE, Grundon MF, Kaempfen HX. J. Chem. Soc. 1963; 4578
    • 14a Beringer FM, Gindler EM. J. Am. Chem. Soc. 1955; 77: 3203
    • 14b Caserio MC, Glusker DL, Roberts JD. J. Am. Chem. Soc. 1959; 81: 336
  • 15 Jalalian N, Ishikawa EE, Silva LF. Jr, Olofson B. Org. Lett. 2011; 13: 1552
  • 16 Jalalian N, Petersen TB, Olofsson B. Chem. Eur. J. 2012; 18: 14140
  • 17 Lindstedt E, Ghosh R, Olofsson B. Org. Lett. 2013; 15: 6070
  • 18 Chan L, McNally A, Toh QY, Mendoza A, Gaunt MJ. Chem. Sci. 2015; 6: 1277
  • 19 Thorat PB, Waghmode NA, Karade NN. Tetrahedron Lett. 2014; 55: 5718
  • 20 Bhong BY, Shelke AV, Karade NN. Tetrahedron Lett. 2013; 54: 739
  • 21 Lubinovski JJ, Knapczyk JW, Calderon JL, Petit LR, McEwen WE. J. Org. Chem. 1975; 40: 3010
  • 22 Ghosh R, Lindstedt E, Jalalian N, Olofsson B. ChemistryOpen 2014; 3: 54
  • 23 Sundalam SK, Stuart DR. J. Org. Chem. 2015; 80: 6456
  • 24 Ghosh R, Olofsson B. Org. Lett. 2014; 16: 1830
  • 25 Petersen TB, Khan R, Olofsson B. Org. Lett. 2011; 13: 3462
  • 26 Kumar D, Arun V, Pilania M, Shekar KP. C. Synlett 2013; 24: 831
  • 27 Xiong B, Feng X, Zhu L, Chen T, Zhou Y, Au C.-T, Yin S.-F. ACS Catal. 2015; 5: 537
  • 28 Carrol MA, Wood RA. Tetrahedron 2007; 63: 11349
  • 29 Yang Y, Wu X, Han J, Mao S, Qian X, Wang L. Eur. J. Org. Chem. 2014; 6854
  • 30 Tinnis F, Stridfeldt E, Lundberg H, Adolfsson H, Olofsson B. Org. Lett. 2015; 17: 2688
  • 31 Thomé I, Bolm C. Org. Lett. 2012; 14: 1892
  • 32 Antonchick AP, Samanta R, Kulikov K, Lategahn J. Angew. Chem. Int. Ed. 2011; 50: 8605
  • 33 Pang X, Lou Z, Li M, Wen L, Chen C. Eur. J. Org. Chem. 2015; 3361
  • 34 Gonda Zs, Novák Z. Chem. Eur. J. 2015; 21: 16801
  • 35 Riedmüller S, Nachtsheim BJ. Synlett 2015; 26: 651
  • 36 Sandin RB, Christiansen RG, Brown RK, Kirkwood S. J. Am. Chem. Soc. 1947; 69: 1550
  • 37 Huang X, Zhu Q, Xu Y. Synth. Commun. 2001; 31: 2823
  • 38 Krief A, Dumont W, Robert M. Synlett 2006; 484
  • 39 Wagner AM, Sanford MS. J. Org. Chem. 2014; 79: 2263
  • 40 Umierski N, Manolikakes G. Org. Lett. 2013; 15: 4972
  • 41 Margraf N, Manolikakes G. J. Org. Chem. 2015; 80: 2582
  • 42 Tolstaya TP, Sukhomlinova LI, Vanchikov AN, Bumagin NA. Chem. Heterocycl. Compd. 1999; 35: 106
  • 43 Spyroudis S, Varvoglis A. J. Chem. Soc., Perkin Trans. 1 1984; 135
  • 44 Wang B, Graskemper JW, Qin L, DiMagno SG. Angew. Chem. Int. Ed. 2010; 49: 4079
  • 45 Grushin VV. Chem. Soc. Rev. 2000; 29: 315
  • 46 Vaddula BR, Varma RS, Leazer J. Eur. J. Org. Chem. 2012; 6852
    • 47a West CM. L, Jones T, Price P. Nat. Rev. Cancer 2004; 4: 457
    • 47b Lee C.-M, Farde L. Trends Pharmacol. Sci. 2006; 27: 310
  • 48 Yusubov MS, Svitich DY, Larkina MS, Zhdankin VV. ARKIVOC 2013; (i): 364
  • 49 Brooks AF, Topczewski JJ, Ichiishi N, Sanford MS, Scott PJ. H. Chem. Sci. 2014; 5: 4545
  • 50 Jacobson O, Kiesewetter DO, Chen X. Bioconjugate Chem. 2015; 26: 1
  • 51 Hu B, Miller WH, Neumann KD, Linstad EJ, DiMagno SG. Chem. Eur. J. 2015; 21: 6394
  • 52 Dohi T, Ito M, Yamaoka N, Morimoto K, Fujioka H, Kita Y. Angew. Chem. Int. Ed. 2010; 49: 3334
  • 53 Castro S, Fernández JJ, Vicente R, Fañanás FJ, Rodríguez F. Chem. Commun. 2012; 48: 9089
  • 54 Ackermann L, Acqua MD, Fenner S, Vincente R, Sandmann R. Org. Lett. 2011; 13: 235
  • 55 Wen J, Zhang R.-Y, Chen S.-Y, Zhang J, Yu X.-Q. J. Org. Chem. 2012; 77: 766
  • 56 Chen K, Koser GF. J. Org. Chem. 1991; 56: 5764
  • 57 Oh CH, Kim JS, Jung HH. J. Org. Chem. 1999; 64: 1338
  • 58 Aggarwal VK, Olofsson B. Angew. Chem. Int. Ed. 2005; 44: 5516
  • 59 Wang D, Ge B, Li L, Shan J, Ding Y. J. Org. Chem. 2014; 79: 8607
  • 60 Monastryskyi A, Namelikonda NK, Manetsch R. J. Org. Chem. 2015; 80: 2513
  • 61 Zhang Y, Han J, Liu Z.-J. Synlett 2015; 26: 2593
  • 62 Dey C, Lindstedt E, Olofsson B. Org. Lett. 2015; 17: 4554
    • 63a Meldal M, Tornoe CW. Chem. Rev. 2008; 108: 2952
    • 63b Beletskaya IP, Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337
    • 63c Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651
    • 63d Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
    • 63e Monnier M, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 63f Alexakis A, Bäckvall J.-E, Krause N, Pamies O, Diéguez M. Chem. Rev. 2008; 108: 2796
    • 63g Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
    • 63h Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 63i Collet F, Lescot C, Dauban P. Chem. Soc. Rev. 2011; 40: 1926
    • 63j Cacchi S, Fabrizi G, Goggiamani A. Org. Biomol. Chem. 2011; 9: 641
    • 63k Gephart RT, Warren TH. Organometallics 2012; 31: 7728
  • 64 Phipps RJ, Grimster NP, Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 8172
  • 65 Modha SG, Greaney MF. J. Am. Chem. Soc. 2015; 137: 1416
  • 66 Kumar D, Pilania M, Arun V, Pooniya S. Org. Biomol. Chem. 2014; 12: 6340
  • 67 Phipps RJ, Gaunt MJ. Science 2009; 323: 1593
  • 68 Chen B, Hou X.-L, Li Y.-X, Wu Y.-D. J. Am. Chem. Soc. 2011; 133: 7668
  • 69 Duong HA, Gilligan RE, Cooke ML, Phipps RJ, Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 463
  • 70 Ryan JH, Stang PJ. Tetrahedron Lett. 1997; 38: 5061
  • 71 Allen A, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 4260
  • 72 Harvey JS, Simonovich SP, Jamison CR, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 13782
  • 73 Bigot A, Williamson AE, Gaunt MJ. J. Am. Chem. Soc. 2011; 133: 13778
  • 74 Phipps RJ, McMurray L, Ritter S, Duong HA, Gaunt MJ. J. Am. Chem. Soc. 2012; 134: 10773
  • 75 Prakash M, Muthusamy S, Kesavan V. J. Org. Chem. 2014; 79: 7836
  • 76 Gigant N, Chausset-Boissaire L, Belhomme M.-C, Poisson T, Pannecoucke X, Gillaizeau I. Org. Lett. 2013; 15: 278
  • 77 Cahard E, Bremeyer N, Gaunt MJ. Angew. Chem. Int. Ed. 2013; 52: 9284
  • 78 Li X, Xu J, Zhang P, Gao Y, Wu J, Tang G, Zhao Y. Synlett 2014; 25: 2009
  • 79 Zhou B, Hou W, Yang Y, Feng H, Li Y. Org. Lett. 2014; 16: 1322
  • 80 Walkinshaw AJ, Xu W, Suero MG, Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 12532
  • 81 Zhang F, Das S, Walkinshaw AJ, Casitas A, Taylor M, Suero MG, Gaunt MJ. J. Am. Chem. Soc. 2014; 136: 8851
  • 82 Sinai Á, Vangel D, Gáti T, Bombicz P, Novák Z. Org. Lett. 2015; 17: 4136
  • 83 Chen J, Chen C, Chen J, Wang G, Qu H. Chem. Commun. 2015; 51: 1356
  • 84 Sinai Á, Mészáros Á, Gáti T, Kudar V, Palló A, Novák Z. Org. Lett. 2013; 15: 5654
  • 85 Székely A, Sinai Á, Tóth EB, Novák Z. Synthesis 2014; 46: 1871
  • 86 Aradi K, Novák Z. Adv. Synth. Catal. 2015; 357: 371
  • 87 Kovács Sz, Novák Z. Tetrahedron 2013; 69: 8987
  • 88 Li J, Wang H, Sun J, Yang Y, Liu L. Org. Biomol. Chem. 2014; 12: 7904
  • 89 Wang Y, Chen C, Peng J, Li M. Angew. Chem. Int. Ed. 2013; 52: 5323
  • 90 Su X, Chen C, Wang Y, Chen J, Lou Z, Li M. Chem. Commun. 2013; 49: 6752
  • 91 Wang Y, Chen C, Zhang S, Lou Z, Su X, Wen L, Li M. Org. Lett. 2013; 15: 4794
  • 92 Aradi K, Bombicz P, Novák Z. J. Org. Chem. 2016; 81: 920
    • 93a Deprez NR, Sanford MS. Inorg. Chem. 2007; 46: 1924
    • 93b Becht J.-M, Drian CL. Org. Lett. 2008; 10: 3161
    • 93c Huang C, Chernyak N, Dudnik AS, Gevorgyan V. Adv. Synth. Catal. 2011; 353: 1285
    • 93d Topczewski JJ, Sanford MS. Chem. Sci. 2015; 6: 70
    • 93e Kang S.-K, Baik T.-G, Hur Y. Tetrahedron 1999; 55: 6863
    • 93f Liang Y, Luo S, Liu C, Wu X, Ma Y. Tetrahedron 2000; 56: 2961
    • 93g Zhu M, Song Y, Cao Y. Synthesis 2007; 853
    • 93h Bellina F, Rossi R. Tetrahedron 2009; 65: 10269
  • 94 Deprez NR, Kalyani D, Krause A, Sanford MS. J. Am. Chem. Soc. 2006; 128: 4972
  • 95 Wagner AM, Sanford MS. Org. Lett. 2011; 13: 288
  • 96 Malmgren J, Nagendiran A, Tai C.-W, Bäckvall J.-E, Olofsson B. Chem. Eur. J. 2014; 20: 13531
  • 97 Yang Q, Chang J, Wu Q, Zhang B. Res. Chem. Intermed. 2012; 38: 1335
  • 98 Tang D.-TD, Collins KD, Ernst JB, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 1809
  • 99 Wu Y, Wu F, Zhu D, Luo B, Wang H, Hu Y, Wen S, Huang P. Org. Biomol. Chem. 2015; 13: 10386
  • 100 Zhu D, Wu Y, Wu B, Luo B, Ganesan A, Wu F.-H, Pi R, Huang P, Wen S. Org. Lett. 2014; 16: 2350
  • 101 Wu Y, Peng X, Luo B, Wu F.-H, Liu B, Song F.-Y, Huang P, Wen S. Org. Biomol. Chem. 2014; 12: 9777
  • 102 Bhunia SK, Polley A, Natarajan R, Jana R. Chem. Eur. J. 2015; 21: 16786
  • 103 Hickman AJ, Sanford MS. ACS Catal. 2011; 1: 170
  • 104 Wu X, Yang Y, Han J, Wang L. Org. Lett. 2015; 17: 5654
  • 105 Storr TE, Greaney MF. Org. Lett. 2013; 15: 1410
  • 106 Collins KD, Honeker R, Vásquez-Céspedes S, Tang D.-TD, Glorius F. Chem. Sci. 2015; 6: 1816
    • 107a Ryabov AD. Chem. Rev. 1990; 90: 403
    • 107b Shilov AE, Shul’pin GB. Chem. Rev. 1997; 97: 2879
  • 108 Daugulis O, Zaitsev VG. Angew. Chem. Int. Ed. 2005; 44: 4046
  • 109 Kalyani D, Deprez NR, Desai LV, Sanford MS. J. Am. Chem. Soc. 2005; 127: 7330
  • 110 Deprez NR, Sanford MS. J. Am. Chem. Soc. 2009; 131: 11234
  • 111 Neufeldt SR, Sanford MS. Adv. Synth. Catal. 2012; 354: 3517
  • 112 Bedford RB, Webster RL, Mitchell CJ. Org. Biomol. Chem. 2009; 7: 4853
  • 113 Bedford RB, Mitchell CJ, Webster RL. Chem. Commun. 2010; 46: 3095
  • 114 Xiao B, Fu Y, Xu J, Gong T.-J, Dai J.-J, Yi J, Liu L. J. Am. Chem. Soc. 2010; 132: 468
  • 115 Wu Z, Chen S, Hu C, Li Z, Xiang H, Zhou X. ChemCatChem 2013; 5: 2839
  • 116 Uhlig N, Li C.-J. Chem. Eur. J. 2014; 20: 12066
  • 117 Chary BC, Kim S, Park Y, Kim J, Lee PH. Org. Lett. 2013; 15: 2692
  • 118 Jeon WH, Lee TS, Kim EJ, Moon B, Kang J. Tetrahedron 2013; 69: 5152
  • 119 Chan LY, Cheong L, Kim S. Org. Lett. 2013; 15: 2186
  • 120 Hu R.-B, Zhang H, Zhang X.-Y, Yang S.-D. Chem. Commun. 2014; 50: 2193